
CS 4350: Fundamentals of Software Engineering
CS 5500: Foundations of Software Engineering

Lesson 1.1 Course Introduction

Jon Bell, John Boyland, Mitch Wand

Khoury College of Computer Sciences

1

Instructors

2

Mitch Wand Jonathan BellJohn Boyland

Teaching Assistants

3

Joseph Burns

Guneet Kaur

Eiki Kan

Satyajit Gokhale

Michael Davinroy Yuting Gan

Ben Schultze

What is software engineering?

• Software Engineering encompasses the tools and
processes that we use to design, construct and
maintain programs over time.

4

Good code is necessary but not sufficient

• Developing software is a systems enterprise
• there are many stakeholders

• how to determine the requirements?

• how to design code for:
• reuse, readability, scale? other factors?

• how to organize the development process?

• how to make sure you've built the thing right?

• how to make sure you've built the right thing?

5

SE includes Tools and Processes

• The answers to those questions will depend on
things like:
• the size of the team

• the size of the product

• the longevity of the product

• There's no one "right" way; there are always
tradeoffs.

• But there are best practices, which we will expect
you to follow.

6

Learning Objectives for this course:

• By the end of this course you will--
• Be able to define and describe the phases of the

software engineering lifecycle.

• Be able to explain the role of key processes and
technologies in modern software development.

• Be able to productively apply instances of major tools
used in elementary SE tasks.

• Design and implement a portfolio-worthy software
engineering project in a small team environment that
can be showcased to recruiters.

7

Learning Objectives for this Lesson

• By the end of this lesson you should be able to:
• Explain what SE is and why it’s important

• List your weekly obligations as a student

• List the requirements for completing the course

• Explain how assignments will be graded

8

Approach

• We will try to mirror the experience of a young
software engineer joining a new team...
• "onboarding" to a new codebase

• start with small individual projects (apx. 3 homeworks)

• participate in small team project to design & develop a
major new feature (Team Project, with intermediate
deliverables)

9

Technology

• In our shop we use:
• TypeScript as implementation language

• React for web pages

• Chakra-UI for design elements

• Visual Studio Code

• + git, etc...

10

Course Mechanics

• Our goal is to provide a productive learning
environment to both remote and on-the-ground
students

• “Flipped-Classroom” Model:
• Lecture videos will be posted at start of week:

• watch videos before coming to class

• Come prepared with questions!!

• During scheduled class time: discussion, activities. If you
come in person, bring laptop and headphones

• You are expected to come to class, either in person or
remote.

11

Laboratories (Tutorials)

• There will be regular laboratory exercises to give
you practice with the technologies we will use.

• Not graded, but highly recommended

• Typically, will consist of structured steps that will
guide you through a typical task

• Typically asynchronous, but the TAs will have a
dedicated office hour for handling your questions
about the lab exercise.

12

Pedagogy

• We are big on "learning objectives"

• A learning objective is something you should be
able to do after completing the learning experience
(lesson|homework|etc.).

• Every lesson and every homework will have explicit
learning goals.
• We will tell you these before and remind you of them

afterwards

13

Like Slides 5-6!

Course Requirements

• There will be three programming assignments and
a final project. You will complete the assignments
individually, and the project in a group of 3 or 4.

• The overall grading breakdown is:
• 36% Programming Assignments

• 29% Final Project

• 10% Quizzes and in-class activities

• 25% Final Exam

14

Grading (1)

• We will be using a new grading system this
semester, called "specification grading".

• In this system, we will give a rating on each element
of each assignment.

• there will be exactly three possible ratings for each
element:
• below minimum expectations

• meets minimum expectations

• satisfactory

15

Grading (2)

• This is called "specification grading" because we will be as
precise as we can to specify what is necessary for you to
achieve each rating.

• Here's an example from a hypothetical assignment about
code review:

16

Weight in
Assignment

Criterion Meets Minimum
Expectations

Satisfactory

4% Naming Identify at least 1
good name and 1
bad name in the
code base. Some
examples may not
be well-grounded
in a design
rationale

Identify at least 3
“good” names and 3
“bad” names. Each
example is
substantiated with 1
sentence justifying
why this is a good or
bad name.

Grading (3)
• Note: there is no partial credit. For each gradable

element you will get exactly one of those 3 ratings.
• The factors that we might have considered for partial

credit will be broken out into separate elements. The
elements will be aligned, as best we can, with the
stated learning objectives of the assignment.

• You will know the rating criteria before you do the
assignment.

• At the end of each assignment, you will receive
• your rating on each of the elements in the assignment
• a 3-tuple, with the weighted total of "below minimums",

"minimums" and "satisfactories" that you got.
• So in the example, if you got a "satisfactory", that would

count as 4% towards your satisfactories.

17

Grading (4)

18

• So if you had an assignment with 4 parts, and you
got the scores indicated in the matrix below, you
would wind up with a score of (0.2, 0.1, 0.7)

Item Weight Below
Minimum

Minimum Satisfactory

1 0.2 X

2 0.3 X

3 0.4 X

4 0.1 X

TOTAL 0.2 0.1 0.7

Grading (5)

• Note: Do NOT ask us to average your 3-dimensional
grade into a single value. The ratings are ordinal
data, not linear data, and in statistics it's a big no-
no to take averages over ordinal data.

19

Go look up "ordinal

data" on the

internet. It's an

important but

underappreciated

concept.

Grade Appeal Policy

• If you have concerns regarding the grading of your
work, please let us know right away by opening a
regrade request in GradeScope.
• Do not post on Piazza or email your TA or instructor

• GradeScope provides an interface that allows us to review all
regrade requests in one place.

• All regrade requests must be submitted within 7 days
from your receipt of the graded work.

• If your regrade request is closed and you feel that the
response was not satisfactory, you may appeal to the
instructor via email within 48 hours

20

Late Policy

• Your work is late if it is not turned in by the
deadline.
• 10% will be deducted for late HW assignments turned in

within 24 hours after the due date

• HW assignments submitted more than 24 hours late will
receive a zero.

• If you're worried about being busy around the time of a
HW submission, please plan ahead and get started early.

21

Academic Integrity (1)

• Students must work individually on all homework
assignments.

• We encourage you to have high-level discussions with
other students in the class about the assignments,
however, we require that when you turn in an
assignment, it is only your work. That is, copying any
part of another student's assignment is strictly
prohibited.

• If you steal someone else's work, you fail the class.

• You are responsible for protecting your work. If
someone uses your work, with or without your
permission, you fail the class.

22

Academic Integrity (2)

• You are free to reuse small snippets of example
code found on the Internet (e.g. via StackOverflow)
provided that it is attributed.

• If you are concerned that by reusing and attributing
that copied code it may appear that you didn't
complete the assignment yourself, then please raise
a discussion with the instructor.

• If you are in doubt whether using others' work is
allowed, you should assume that it is NOT allowed
unless the instructors confirm otherwise.

23

Communication

• Course web page (https://neu-se.github.io/CS4530-
CS5500-Spring-2021)

• Canvas

• Piazza
• for questions about assignments, etc.

• Slack (nusespring2021.slack.com)
• for more general discussions
• # ta-office-hours
• knowledge-sharing (within the limits of the Academic

Integrity Policy)
• whatever else you might want (within the limits of the Code

of Student Conduct)

24

https://neu-se.github.io/CS4530-CS5500-Spring-2021
nusespring2021.slack.com

Review

• Now that you've studied this lesson, you should be
able to:
• Explain what SE is and why it’s important

• List your weekly obligations as a student

• List the requirements for completing the course

• Explain how assignments will be graded

25

We told you that we were going to list

the learning objectives at the beginning

and end of each lesson, and here we are!

OK, now let’s get down to work!

• In our next lesson, we'll learn about the basic
principles of well-designed software

26

	CS 4350: Fundamentals of Software Engineering CS 5500: Foundations of Software Engineering Lesson 1.1 Course Introduction
	Instructors
	Teaching Assistants
	What is software engineering?
	Good code is necessary but not sufficient
	SE includes Tools and Processes
	Learning Objectives for this course:
	Learning Objectives for this Lesson
	Approach
	Technology
	Course Mechanics
	Laboratories (Tutorials)
	Pedagogy
	Course Requirements
	Grading (1)
	Grading (2)
	Grading (3)
	Grading (4)
	Grading (5)
	Grade Appeal Policy
	Late Policy
	Academic Integrity (1)
	Academic Integrity (2)
	Communication
	Review
	OK, now let’s get down to work!

