
CS 4350: Fundamentals of Software Engineering
CS 5500: Foundations of Software Engineering

Lesson 1.2 General Program Design Principles

Jon Bell, John Boyland, Mitch Wand

Khoury College of Computer Sciences

1

Outline of this lesson

1. The purposes of the principles

2. Difficulties the principles should help with

3. Five general-purpose principles
• usable for all programming, not just object-oriented

In the next lesson, we'll present five more principles
that are specific to object-oriented programming

2

Learning Objectives for this Lesson

• By the end of this lesson you should be able to:
• Describe the purpose of our design principles

• List 5 general design principles and illustrate their
expression in code

• Identify some violations of the principles and suggest
ways to mitigate them

3

The Challenge: Controlling Complexity

• Software systems must be comprehensible by
humans

• Why? Software needs to be maintainable
• continuously adapted to a changing environment

• Maintenance takes 50–80% of the cost

• Why? Software needs to be reusable
• Economics: cheaper to reuse than rewrite!

4

The Challenge: Controlling Complexity

• Software systems must be comprehensible by
humans
• How? Make programs readable.

• How? Make programs flexible.

• How? Make programs modular.

5

The biggest obstacle: coupling

• Two pieces of code are coupled if a change in one
demands a change in the other.

• A coupling represents an agreement between the two
pieces of code.
• They may agree on:

• names
• order (e.g. of arguments)
• meaning (e.g. meaning of data)
• algorithms

• The more two pieces of code are coupled, the harder
they are to understand and modify: you have to
understand both to understand either of them.

6

There's a fancy

word for this:

connascence

(meaning "born

together")

More coupling means

less readability, less

modifiability

Five general-purpose principles

7

Five General Principles

1. Use Good Names

2. Design Your Data

3. One method/one job

4. Don't Repeat Yourself

5. Don't Hardcode Things That Are
Likely To Change

Good idea: make a

sticky note with this

list and keep it on your

laptop screen.

Principle 1. Use Good Names

• The name of a thing is a first clue to the reader
about what the thing means.
• often, it's the only clue 

• Use good names for
• constants

• variables

• functions/methods

• data types

8

• Replace magic numbers with good names

Good Names for Constants

9

const salesTaxRate = 1.06
let salesPrice = netPrice * salesTaxRate

Where did that 1.06 come

from?

Oh, it's the sales tax? Are

there many occurrences of

that 1.06 in your code?

(Probably!) Will the sales tax

rate ever change? (Probably!)

Let's fix it!

let salesprice = netPrice * 1.06

But use good names!

10

int ONE_HUNDRED = 100;
int a[ONE_HUNDRED]; …

int a[100]; for (int i = 0; i <= 99; i++) a[i] = 0;

int SIZE = 100;
int a[SIZE]; for (int i = 0; i <= SIZE-1; i++) a[i] = 0;

No.....!

Even if you search for 100,

you'll miss the 99!

But use GOOD

names!

Good Names for Variables and Types

11

var temp : Temperature
var loc : SensorLocation

var t : number
var l : number

var temp : number
var loc : number

What do these

variables mean?

Better names would

give the reader a

clue.

Good names for

the data types

solves the

problem.

Does 'temp' mean 'temporary',

or 'temperature', or

something else?

Good Names for Functions and Methods

12

function checkLine () : boolean

function isLineTooLong () : boolean

What are you checking it

for? Length? Illegal

Syntax? or what?

Ahh, now we know!

Good Names for Functions and Methods

• Use noun-like names for functions or methods that
return values, e.g.

• not:

• Reserve verb-like names for functions or methods
that perform actions, like

13

let c = new Circle(initRadius)
let a = c.diameter()

let a = c.calculateDiameter()

Your workplace should have

coding standards for things

like this. This particular

item is part of Prof. Wand's

personal coding practice

table1.addItem(student1,grade1)

Principle 2. Design Your Data

• You need to do three things:

1. Decide what part of the information in the
"real world" needs to be represented as data

2. Decide how that information needs to be
represented as data

3. Document how to interpret the data in your
computer as information about the real world

14

Example:

• Right now I am wearing a red shirt, and I've decided
I need to represent that fact in my program.

• How should I represent that in my program?

• I need to represent the color red. Possibilities:
• "red" (English text)

• "RED" (English text)

• "Lāla" (Hindi, according to Google)

• #ff0000

15

Example (2)

• And of course we also need to represent my shirt.

• In that representation, we have to represent its
color.

• Here's one of many possibilities:

16

type Shirt {
color : Color // the color of the shirt

}

let myShirt = {color: 0xff000} // my shirt

type Shirt {
color : Color // the color

// of the shirt
}

// my shirt
let myShirt = {color: 0xff000}

The Big Picture

•

• How do we know that these are connected?

• Answer: we have to write down the interpretation

• In our Typescript infrastructure, we do that with the
comments.

17

My shirt is
red

representation

interpretation

Principle 3: One Method/One Job

• Each class, and each method of that class, should
have one job, and only one job

• If your method has more than one job, split it into 2
methods. Why?
• You might want one part but not the other

• It's easier to test a method that has only one job

• You call both of them if you need to.
• or write a single method that calls them both

• Same thing for classes.

18

The fancy name for

this is "The Single

Responsibility

Principle". You can

use this if you want

to impress your coop

interviewer.

Principle 4: Don't Repeat Yourself

• If you have some quantity that you use more than
once, give it a name and use the name.

• That way you only need to change it in one place!

• And of course you should use a good name

• If you have some task that you do in many places,
make it into a procedure.

• If the tasks are slightly different, turn the
differences into parameters.

19

We saw this before

with the sales tax

and array bound

examples.

This is called "Single

Point of Control"

A real example

20

function testequal <T> (testname: string, actual: T, correct: T) {
it(testname,

function () { assert.deepEqual(actual, correct) })
}

describe('tests for count_local_morks', function () {
testequal('empty crew',count_local_morks(ship1),0)
testequal('just Mork',count_local_morks(ship2),1)
testequal('just Mindy',count_local_morks(ship3),0)
testequal('two Morks',count_local_morks(ship4),2)
testequal('drone has no Morks',count_local_morks(drone1),0)

})

Think of how much

typing this saves!

Plus, if I ever need

to change what

testequal does, I can

do it all in one place.

Principle 5:
Don't Hardcode Things That Are Likely To Change

• "No magic numbers" and "Don't Repeat Yourself"
are already examples of this.

• General strategy: If there something that might
change, give it a name
• if it's not already a "thing", refactor to make it a "thing"

• many strategies for this; let's look at one of them

21

Example

• Imagine we are computing income tax in a state
where there are four rates:
• One on incomes less than $10,000

• One on incomes between $10,000 and $20,000

• One on incomes between $20,000 and $50,000

• One on incomes greater than $50,000

• You might write something like

22

You might write something like

• What might change?
• The boundaries of the tax brackets might change

• The number of brackets might change

23

function grossTax(income: number): number {
if ((0 <= income) && (income <= 10000)) { return 0 }
else if ((10000 < income) && (income <= 20000))
{ return 0.10 * (income - 10000) }
else if ((20000 < income) && (income <= 50000))
{ return 1000 + 0.20 * (income - 20000) }
else { return 7000 + 0.25 * (income - 50000) }

}

Ouch! Do you really

want to dive into

that conditional?

Not so terrible..

This also violates

one function/one job:

it finds the right

bracket AND

calculates the

appropriate tax

So let's represent our data differently

24

// defines the tax bracket for income lower < income <= upper.
// if upper is null, then lower < income (no upper bound)
type TaxBracket = {

lower: number,
upper: number | null,
base : number
rate : number

}

let brackets : TaxBracket[] = [
{lower:0, upper:10000, base:0, rate:0},
{lower:10000, upper:20000, base:0, rate:0.10},
{lower:20000, upper:50000, base:1000, rate:0.20},
{lower:50000, upper: null, base:7000, rate:0.25}

]

The brackets are

now a "thing".

All the data is in one

place, so we have a

Single Point of

Control

And now it's easy to rewrite our function

25

// defines the incomes covered by a bracket
function isInBracket(income:number, bracket:TaxBracket) : boolean {

if (bracket.upper == null)
{ return (bracket.lower <= income) }
else
{ return ((bracket.lower <= income) && (income < bracket.upper))}

}

function taxByBracket(income:number,bracket:TaxBracket) : number {
return bracket.base + bracket.rate * (income - bracket.lower)

}

function grossTax2 (income:number, brackets: TaxBracket[]) : number {
return taxByBracket(income,income2bracket(income,brackets))

} And we are back

to one

function/one job.

Review: Learning Objectives for this Lesson

• You should now be able to:
• Describe the purpose of our design principles

• List 5 general design principles and illustrate their
expression in code

• Identify some violations of the principles and suggest
ways to mitigate them

26

Next...

• In our next lesson, we'll learn about five more basic
principles that are specific to an object-oriented
setting.

27

	CS 4350: Fundamentals of Software Engineering CS 5500: Foundations of Software Engineering Lesson 1.2 General Program Design Principles
	Outline of this lesson
	Learning Objectives for this Lesson
	The Challenge: Controlling Complexity
	The Challenge: Controlling Complexity
	The biggest obstacle: coupling
	Five general-purpose principles
	Principle 1. Use Good Names
	Good Names for Constants
	But use good names!
	Good Names for Variables and Types
	Good Names for Functions and Methods
	Good Names for Functions and Methods
	Principle 2. Design Your Data
	Example:
	Example (2)
	The Big Picture
	Principle 3: One Method/One Job
	Principle 4: Don't Repeat Yourself
	A real example
	Principle 5: Don't Hardcode Things That Are Likely To Change
	Example
	You might write something like
	So let's represent our data differently
	And now it's easy to rewrite our function
	Review: Learning Objectives for this Lesson
	Next...

