
CS 4350: Fundamentals of Software Engineering
CS 5500: Foundations of Software Engineering

Lesson 1.3 Object-Oriented Design Principles

Jon Bell, John Boyland, Mitch Wand

Khoury College of Computer Sciences

1

Outline of this lesson

1. Reminder:
• the purposes of the principles

• Difficulties the principles should help with

2. Five principles for OO systems

2

Learning Objectives for this Lesson

• By the end of this lesson you should be able to:
• Describe the purpose of our design principles

• List 5 object-oriented design principles and illustrate
their expression in code

• Identify some violations of the principles and suggest
ways to mitigate them

3

The Challenge: Controlling Complexity

• Software systems must be comprehensible by
humans

• Why? Software needs to be maintainable
• continuously adapted to a changing environment

• Maintenance takes 50–80% of the cost

• Why? Software needs to be reusable
• Economics: cheaper to reuse than rewrite!

4

The Challenge: Controlling Complexity

• How? Make programs readable.

• How? Make programs flexible.

• How? Make programs modular.

5

Five Principles for OO Programming

6

Five Principles for OO Programming

1. Make Your Interfaces Meaningful

2. Depend only on behaviors, not their implementation

3. Keep Things as Private as You Can

4. Favor Dynamic Dispatch Over Conditionals

5. Favor Interfaces Over Subclassing

Make a sticky note with

this list, too.

Principle 1: Make Your Interfaces Meaningful

• Interfaces are the thing we use to specify the
behavior of the classes and objects that implement
them.

• We use the word behavior to mean what a single
method does:
• Returning a value is a behavior
• Having some kind of side-effect (mutation, I/O, etc.) is a

behavior

• For our purposes today, we don’t mean anything
larger, like how much memory or time a program
uses.

7

Interfaces are where we specify behaviors

• A temperature sensor is something that returns the
current temperature at the sensor's location:

• Note that the interface specifies both syntax (the
method name) and the semantics (what the
method returns or what it does).

8

// temperatures are measured is Celsius
type Temperature = number

interface TemperatureSensor {
// return the current temperature at the sensor location
getTemperature () : Temperature

}

Note that we've

specified what

these numbers

MEAN (see Principle

2 from the last

Lesson)

Might we want to put

other methods in

ITemperatureSensor?

Maybe we want it to

report its location, too!

Why might or might

not this be a good

idea?

We have many classes that implement the
same interface

• In a kitchen, for example, we might have

9

class RefrigeratorThermometer implements TemperatureSensor {
getTemperature () : Temperature {...}
...

}

class OvenThermometer implements TemperatureSensor {
getTemperature () : Temperature {...}
...

}

class CandyThermometer implements TemperatureSensor {
getTemperature () : Temperature {...}
...

}

These all probably

work in very

different ways!

But the compiler only checks syntax, not
semantics

• If we defined a class that had a getTemperature
method, but that did not return the temperature at
the sensor location, this would not be a correct
implementation of TemperatureSensor. For
example:

• The compiler would accept this, but we shouldn't.

10

class NotReallyASensor implements TemperatureSensor
{

getTemperature () {return 42}
}

Just for fun, make up

3 more classes that

the compiler would

accept but are not

correct

implementations of

TemperatureSensor.

Remember: one interface/one job

• Just like one function/one job...

• If you have a class that needs to advertise two sets
of behaviors, you can always have it implement two
interfaces.

• The fancy name for this is interface segregation.

11

Look it up! You should

look up each of these

vocabulary words on

the internet so you will

be prepared to define

them if your coop

interviewer asks you!

Principle 2: Depend only on behaviors, not
their implementation

12

class TemperatureMonitor {
constructor(

private sensor: TemperatureSensor,
private maxTemp: Temperature,
private minTemp: Temperature,
private alarm: IAlarm,

) { }

// if the sensor is out of range, sound the alarm
public checkSensor(): void {

let temp: Temperature = this.sensor.getTemperature()
if ((temp < this.minTemp) || (temp > this.maxTemp))
{ this.alarm.soundAlarm() }

}
}
// sounds an alarm
interface IAlarm { soundAlarm(): void }

Review: TypeScript classes

13

// getx(), gety() return the x,y coordinates of the point
interface Point {getx():number, gety():number}

class CartesianPoint implements Point {
constructor (private x : number, private y : number) {}
getx() {return this.x}
gety() {return this.y}

}

// r is radius, theta is angle (in radians)
class PolarPoint implements Point {

constructor (private r:number, private theta:number) {}
getx() {return this.r * Math.cos(this.theta)}
gety() {return this.r * Math.sin(this.theta)}

}

const point1 = new CartesianPoint(0.0, 1.0)
const point2 = new PolarPoint(1.0, Math.PI/2.0)

Go review your Typescript

materials if you need to

and then come back to

this lesson...

Principle 2: Depend only on behaviors, not
their implementation

14

class TemperatureMonitor {
constructor(

private sensor: TemperatureSensor,
private maxTemp: Temperature,
private minTemp: Temperature,
private alarm: IAlarm,

) { }

// if the sensor is out of range, sound the alarm
public checkSensor(): void {

let temp: Temperature = this.sensor.getTemperature()
if ((temp < this.minTemp) || (temp > this.maxTemp))
{ this.alarm.soundAlarm() }

}
}
// sounds an alarm
interface IAlarm { soundAlarm(): void }

The monitor doesn't care

what kind of

TemperatureSensor it's

hooked up too. It only

cares that it's a correct

TemperatureSensor, i.e.,

that sending it a

getTemperature message

will return with the

temperature at the

sensor's location.

Similarly, it doesn't care

what kind of alarm it's

hooked up to– only that

sending the alarm a

soundAlarm message will

cause an alarm to sound.

Principle 2: Depend only on behaviors, not
their implementation

15

class TemperatureMonitor {
constructor(

private sensor: TemperatureSensor,
private maxTemp: Temperature,
private minTemp: Temperature,
private alarm: IAlarm,

) { }

// if the sensor is out of range, sound the alarm
public checkSensor(): void {

let temp: Temperature = this.sensor.getTemperature()
if ((temp < this.minTemp) || (temp > this.maxTemp))
{ this.alarm.soundAlarm() }

}
}
// sounds an alarm
interface IAlarm { soundAlarm(): void }

This example also

illustrates one class/one

job. There are three

classes here:

1. The sensor senses the

temperature

2. The monitor checks to

see if the

temperature is out of

range, and tells the

alarm to sound if it is.

3. The alarm actually

sounds the alarm.

Your new Vocabulary Word

16

class TemperatureMonitor {
constructor(

private sensor: TemperatureSensor,
private maxTemp: Temperature,
private minTemp: Temperature,
private alarm: IAlarm,

) { }

// if the sensor is out of range, sound the alarm
public checkSensor(): void {

let temp: Temperature = this.sensor.getTemperature()
if ((temp < this.minTemp) || (temp > this.maxTemp))
{ this.alarm.soundAlarm() }

}
}
// sounds an alarm
interface IAlarm { soundAlarm(): void }

Vocabulary Word: this Principle

is called Dependency Inversion.

This is a fancy word you can use

to impress your coop

interviewer.

Another vocabulary word: Composition

17

class TemperatureMonitor {
constructor(

private sensor: TemperatureSensor,
private maxTemp: Temperature,
private minTemp: Temperature,
private alarm: IAlarm,

) { }

// if the sensor is out of range, sound the alarm
public checkSensor(): void {

let temp: Temperature = this.sensor.getTemperature()
if ((temp < this.minTemp) || (temp > this.maxTemp))
{ this.alarm.soundAlarm() }

}
}
// sounds an alarm
interface IAlarm { soundAlarm(): void }

Giving one class a

reference to an object of

another class (or

interface) is sometimes

called Composition.

That's another

vocabulary word you

should know for your coop

interview.

Delegation is using Composition to avoid
hard work

18

interface IWorker {
// PURPOSE:
doTheHardWork(n:number): void

}

class Class1 {
constructor(worker: IWorker) { }
public doTheClass1Task(n:number): void {

...
worker.doTheHardWork(n+39)
...

}
public anotherAMethod() { }

}
class Class2 {

constructor(worker: IWorker) { }
public doTheClass2Task (n:number): void {

...
worker.doTheHardWork(n-5)
...

}

Here Class1 and Class2

both delegate their hard

work to 'worker'. They

don't care how 'worker' is

implemented, only that it

satisfies the purpose

described by Iworker.

Vocabulary Word: Delegation.

Principle 3: Keep Things as Private as You
Can

• In general, you don't know who is using your code

• You don't want people messing with your data.
• You might have some invariants that your code depends

on, and somebody else might come in and break them.

• You don't want people depending on the details of
your code.
• If you change your details, you might break somebody

else's code (BAD!)

19

Vocabulary Word: this idea is

called encapsulation.

Example (1)

20

// getCounter () always returns an even number
// bumpCounter (n) increases the value of the counter
interface Interface1 {

getCounter () : number
bumpCounter (n:number) : void

}

class Class1 implements Interface1 {
private counter = 0
// INVARIANT: counter is even
public getCounter() { return this.counter }
public bumpCounter (n: number): void {

// the interface didn't say anything about what do with n.
this.counter = this.counter + 2

}
}

This is good. Nothing can

ever cause getCounter()

to return an odd number.

Example (2)

21

class Class2 implements Interface1 {
public counter = 0
// INVARIANT: counter is even
public getCounter() { return this.counter }
public bumpCounter (n: number): void {

// the interface didn't say anything about what do with n.
this.counter = this.counter + 2

}
}

let o = new Class2();
o.bumpCounter();
o.counter++;
console.log(o.getCounter) // prints 3

Oh no! We've reached

inside Class2 and caused

getCounter() to become

odd.

Not only that, but now it

seems that Class2 is not

really an implementation

of Interface1 !

Example (3)

22

class Class2 implements Interface1 {
public c = 0
// INVARIANT: counter is even
public getCounter() { return this.c }
public bumpCounter (n: number): void {

// the interface didn't say anything
// about what do with n.
this.c = this.c + 2

}
}

when we wrote 'public

counter' we announced the

name 'counter' for the

world to use, just like the

names 'getCounter' and

'bumpCounter'. So if we

change that name, we'll

break all the code that

uses it.

let o = new Class2;
o.bumpCounter();
o.counter++; // compiler error here
console.log(o.getCounter)

For example, this code

depends on the name

'counter' (for better or

worse!). Whatever it

used to do, it's now

entirely broken and needs

to be rewritten.

Principle 4: Favor Dynamic Dispatch Over
Conditionals

• We already saw a flavor of this in the income-tax
example.

• Let's look at another example.

23

A Tiny Shape-Manipulation System

• Represent three kinds of shapes:
• circle,
• square
• compound of two shapes

• Each shape exists at a particular position on the
screen

• The system must support 2 operations on shapes
• weight : Shape -> number

• RETURNS: the weight of the given shape, assuming that each
shape weighs 1 gram per pixel of area

• translate : Shape, dx, dy -> Shape
• Returns a shape like the original, but translated by (dx, dy)

24

dx

dy

p

p + (dx,dy)

Solution with conditionals (1)

25

type Shape = Circle | Square | Compound
// radius and side in pixels, must be >= 0
type Circle = { type: "Circle", pos: ScreenPosition, radius: number }
type Square = { type: "Square", pos: ScreenPosition, side: number }
type Compound = { type: "Compound", front: Shape, back: Shape }

// return weight of the shape, assuming each shape weighs
// 1 gram per pixel of area.
function weightOfShape(s: Shape): number {

switch (s.type) {
case "Circle":

{ return (Math.PI * s.radius * s.radius); }
case "Square":

{ return s.side * s.side }
case "Compound":

{ return weightOfShape(s.front) + weightOfShape(s.back) }

}
}

Solution with conditionals (2)

26

// returns a shape like the original, but translated by dx, dy
function translateShape(s:Shape, dx:number, dy:number):Shape {

switch (s.type) {
case "Circle":

{ return {type: "Circle", pos: translatePosition(s.pos,dx,dy),
radius: s.radius} }

case "Square":
{ return {type:"Square", pos: translatePosition(s.pos,dx,dy),

side: s.side} }
case "Compound":

{ return {
type: "Compound",
front: translateShape(s.front, dx, dy),
back: translateShape(s.back, dx,dy)

}}

}
}

What's more likely to change?

• There will be more new functions, but the set of
shapes will be the same
• Then this solution is pretty good– you can always add

more functions to the system

• The set of shapes is likely to differ a lot, but the set
of functions will be pretty much the same
• Yuck! You'll need to go through and change the code in

each of the functions

27

Interfaces to the rescue!

28

// a Shape is anything that has a weight method and a translate method
// that have the right meaning.
// MEANING OF WEIGHT AND TRANSLATE GOES HERE...
interface Shape {

weightOfShape () : number,
translateShape(dx:number, dy:number) : Shape

}

Represent each shape as a class
implementing the Shape interface

29

// radius in pixels, must be >= 0
class Circle implements Shape {

constructor (
private pos: ScreenPosition,
private radius: number

) { }
public weightOfShape () : number { return (Math.PI * this.radius * this.radius) }
public translateShape (dx:number, dy:number) : Circle {

return new Circle(
translatePosition(this.pos, dx, dy),
this.radius

)
}

}

Represent each Shape as a class (2)

30

// side in pixels, must be >= 0
class Square implements Shape {

constructor (private pos:ScreenPosition, private side:number) {}
public weightOfShape () : number {return this.side * this.side}
public translateShape (dx:number, dy:number) : Square {

return new Square(
translatePosition(this.pos, dx, dy),
this.side

)
}

}

Represent each Shape as a class (3)

31

class Compound implements Shape {
constructor(private front:Shape, private back:Shape){}
public weightOfShape (): number {

return this.front.weightOfShape() + this.back.weightOfShape()
}
public translateShape (dx: number, dy: number) {

return new Compound (
this.front.translateShape(dx, dy),
this.back.translateShape(dx, dy)

)
}

}

This is "classic" object-oriented design

• Let's look at this graphically...

32

Original vs. OO organization

Original: Square Circle Compound

weight

translate

33

OO: Square Circle Compound

weight

translate

Here's another way of
visualizing the same
thing. Here we have six
small rectangles
corresponding to our
six pieces of
functionality.

In the original organization, all the pieces
corresponding to weight are written together
(symbolized here by outlining them in red), and
all the pieces corresponding to translate are
written together (outlined in green).

In the object-oriented organization, all the
pieces for square are written together (the
orange outline in the lower table), all the pieces
for circle are written together (the green
outline), and all the pieces for compound are
written together (the brown outline).

OO: Square Circle Compound Triangle

weight New code

translate New code

Adding a New Data Variant

Original: Square Circle Compound Triangle

weight New code

translate New code

34

In the original organization,
the two cells correspond to
different portions of our
file, so we will need to edit
two pieces of our file: the
weight function and the
translate function.

In the object-oriented organization, we will
add the two pieces in a single place in our
file: the new triangle class.

If we add a new
kind of data, such
as a triangle, what
will we need to
change?

We will need 2
pieces of code:
one to compute
the weight of a
triangle and one
to translate it

Adding a New Operation

Original: Square Circle Compound

weight

translate

rotate new code 1 new code 2 new code 3

35

OO: Square Circle Compound

weight

translate

rotate new code 1 new code 2 new code 3

If we add a new operation such as move, what
needs to change?

In the original organization, we add the new
code in a single function definition, the function
rotate, symbolized by the blue outline above.

In the object-oriented organization,
we must add a rotate method in each
of our classes.

Extensibility

Original Org. O-O Org.

New Data Variant requires editing in many
places

all edits in one place

New Operation all edits in one place requires editing in many
places

36

Another vocabulary word...

• The idea that you can extend your system by
adding code, rather than changing it, is called the
open-closed principle.

• The system is "open" for extension but "closed" for
modification.

• This is another vocabulary word for your coop
interview.

37

What's the tradeoff?

• Object-oriented organization is better when new
data variants are more likely than new operations.

• The original organization is better when new
operations are more likely than new data variants.

• In the real world, you may not have a choice:
• this decision is up to the system architects

• or may need compatibility with an existing system

• There are ways to get the best of both worlds
• but these are beyond the scope of this course

38

Principle 5: Favor Interfaces Over
Subclassing

• What happened to inheritance (subclassing) in this
story?

• An interface specifies some of the behavior of the
classes that implement it.

• A superclass specifies some of the algorithms of the
classes that inherit from it.
• It means that the subclasses (even those that will be

added in the future) can see some of the details of your
algorithm

• Exactly what details depend on the programming
language; let's see what happens in Typescript

39

Example:

40

// getCounter () always returns an even number
// bumpCounter (n) increases the value of the counter
interface Interface1 {

getCounter () : number
bumpCounter (n:number) : void

}

class Class1 implements Interface1 {
protected counter = 0
// INVARIANT: counter is even
public getCounter() { return this.counter }
public bumpCounter (n: number): void { this.counter = this.counter + 2 }

}

class Class2 extends Class1 {
public bumpCounter (n: number): void {this.counter = this.counter + 1 }

}

Here's our old friend

Class1. This time we've

made 'counter' protected,

meaning that it's only

visible to the subclasses.

But a subclass can do as

much damage as anyone

else. Here Class2 can

violate the invariant.

tl;dr: subclassing weakens

encapsulation!

Whose principles are these?

• There are lots of lists of principles out there.

• These are ours.

• One list you should know is SOLID. This is an
acronym for:
• S: Single Responsibility
• O: Open/Closed Principle
• L: Liskov substitution principle (this has to do with

inheritance, so it's not so important for us right now.)
• I: Interface Segregation
• D: Dependency Inversion

• So we've covered 4 out of 5 of these.

41

Review: Learning Objectives for this Lesson

• You should now be able to:
• Describe the purpose of our design principles

• List 5 object-oriented design principles and illustrate
their expression in code

• Identify some violations of the principles and suggest
ways to mitigate them

42

Whew! That was a big

chunk of stuff. Sorry

about that, but we want

to get you started on the

right foot. You can find

lots of more information in

the recommended

textbooks and on the

internet.

Next steps...

• Formulate some questions and come to the class
meeting!

• Next week, we'll learn about how to organize and
document your code when you have more classes
than our examples so far.

43

	CS 4350: Fundamentals of Software Engineering CS 5500: Foundations of Software Engineering Lesson 1.3 Object-Oriented Design Principles
	Outline of this lesson
	Learning Objectives for this Lesson
	The Challenge: Controlling Complexity
	The Challenge: Controlling Complexity
	Five Principles for OO Programming
	Principle 1: Make Your Interfaces Meaningful
	Interfaces are where we specify behaviors
	We have many classes that implement the same interface
	But the compiler only checks syntax, not semantics
	Remember: one interface/one job
	Principle 2: Depend only on behaviors, not their implementation
	Review: TypeScript classes
	Principle 2: Depend only on behaviors, not their implementation
	Principle 2: Depend only on behaviors, not their implementation
	Your new Vocabulary Word
	Another vocabulary word: Composition
	Delegation is using Composition to avoid hard work
	Principle 3: Keep Things as Private as You Can
	Example (1)
	Example (2)
	Example (3)
	Principle 4: Favor Dynamic Dispatch Over Conditionals
	A Tiny Shape-Manipulation System
	Solution with conditionals (1)
	Solution with conditionals (2)
	What's more likely to change?
	Interfaces to the rescue!
	Represent each shape as a class implementing the Shape interface
	Represent each Shape as a class (2)
	Represent each Shape as a class (3)
	This is "classic" object-oriented design
	Original vs. OO organization
	Adding a New Data Variant
	Adding a New Operation
	Extensibility
	Another vocabulary word...
	What's the tradeoff?
	Principle 5: Favor Interfaces Over Subclassing
	Example:
	Whose principles are these?
	Review: Learning Objectives for this Lesson
	Next steps...

