
CS 4350: Fundamentals of Software Engineering
CS 5500: Foundations of Software Engineering

Lesson 2.1 Documenting Your Design

Jon Bell, John Boyland, Mitch Wand
Khoury College of Computer Sciences

1

© 2021 Jonathan Bell, John Boyland and Mitch Wand. Released
under the CC BY-SA license

https://creativecommons.org/licenses/by-sa/4.0/

Outline of this lesson
1. Why documenting your design is important, and

why it is different from just writing comments in
your program.

2. Introduction to one way of documenting your
design: CRC cards

2

Learning Objectives for this Lesson
• By the end of this lesson you should be able to:

• Explain what it means to document a design
• Describe the importance of having a shared vocabulary

• for teams,
• for communicating with management
• for dealing with clients

• Illustrate the basics of CRC cards

3

Remember the Challenge: Controlling
Complexity
• Software systems must be comprehensible by

humans
• Which humans?

• The other members of your team
• The folks who will maintain and modify your system
• Management
• Your clients
• and ...
• You, a week from now or 6 weeks from now

4

A Design is more than code
• Design is about how your code relates to the real

world
• Design is about the organization of the code
• Design is about the relationships between different

pieces of the code
• So: you need a different language to talk about

your design

5

Remember Principle
#2: Design Your
Data!

Communication Requires a Shared
Vocabulary
• You and your teammates need to have a common

understanding of the things in your program.
• What are their names?
• What do they represent?
• How do they interact?

6

You get to make up
the names. But
you should make
them Good Names,
of course

There are
standard names for
many of these
interactions.
These are called
Design Patterns.

Design Languages
• We'll study two design languages

• CRC Cards
• UML (Unified Modeling Language) [next lesson]

• These are very different languages for describing
designs
• different level of formality
• different scope

7

• A CRC card looks like this:

CRC Cards

8

• Class
• the name of a "thing" in your program
• could be a class, interface, type, etc.

• Responsibilities
• the main job of this "thing" in the program
• should be simple: Remember the Single Responsibility

Principle
• Collaborators

• the other "things" with which this thing interacts
• for us this means the things to which this thing is coupled
• includes at least: all the things that this thing uses, and all the

things that use this thing, at least directly

CRC Cards

9

Some books say to list
just the things that
this thing depends upon.

The Agile Alliance says:
• CRC cards (for Class, Responsibilities, Collaborators) are an

activity bridging the worlds of role-playing games and
object-oriented design.

• With the intent of rapidly sketching several different ideas
for the design of some feature of an object-oriented
systems, two or more team members write down on index
cards the names of the most salient classes involved in the
feature. The cards are then fleshed out with lists of the
responsibilities of each class and the names of collaborators,
i.e. other classes that they depend on to carry out their own
responsibilities.

• The next step is to validate – or invalidate as the case may
be – each design idea by playing out a plausible scenario of
the computation, each developer taking on the role of one
or more classes.

10

https://www.agilealliance.org/glossary/crc-cards

CRC Cards in Practice
• Typically used during early analysis, especially during team

discussions.
• Low-tech
• 4x6 index cards
• They aren't pretty.
• They aren't something you ever want to show your customers or

even your own upper management.
• Each card is a concrete symbol for a thing in the program

during discussion
• Kind of like thinking on a whiteboard, but...
• Cards can be stacked, moved, etc. to illustrate proposed

relationships
• If you come out of a group meeting and your CRC cards aren't

smudged, dog-eared, with lots of scratched-out bits, you probably
weren't really trying.

11

https://www.cs.odu.edu/~zeil/cs330/live/website/Slides/crc/page/crc.html

The metaphor:
Sketching the conspiracy

12

CRC Cards for us
• HW1 will ask you to use CRC Cards to document an
existing design.
• You may not be able to identify all the classes that

use your class. Don't worry too hard about that.
• We will also ask you to put one more thing on your

CRC cards:
• State: the piece of state that an object of this class

keeps.

13

CRC Card Template

14

This template is
available in Canvas
under Files/Week 02,
as a spreadsheet for
typing on and as a png
that you can print out
and write on by hand.

CRC Card for TemperatureSensor
Class Name: TemperatureSensor (interface)

State: none
Responsibilities Collaborators

establish interface for
thermometers in the system

RefrigeratorThermometer

OvenThermometer
etc.
TemperatureMonitor

15

// temperatures are measured in Celsius
type Temperature = number

interface TemperatureSensor {
// return the current temperature
// at the sensor location
getTemperature () : Temperature

}

CRC cards are supposed to be
informal, so don’t get hung up on
emulating the exact words or the
exact layout I've used here.

TemperatureMonitor (1)

16

class TemperatureMonitor {
constructor(

// the sensors
private sensors: TemperatureSensor[],

// map from sensor to its location
private sensorLocationMap: SensorLocationMap,

private maxTemp: Temperature,
private minTemp: Temperature,
private alarm: IAlarm,

) { }

// sensor in range?
private isSensorInRange (sensor:TemperatureSensor) : boolean {

const temp: Temperature = sensor.getTemperature()
return ((temp < this.minTemp) || (temp > this.maxTemp))

}

Here's a slightly more elaborate
TemperatureMonitor

It monitors multiple sensors

And it knows where each sensor is

Better division into one method/one
job than our earlier version.

TemperatureMonitor (2)

17

// if the any of the sensors is out of range, sound the alarm
public checkSensors(sensor:TemperatureSensor): void {

this.sensors.forEach(sensor => {
if (!(this.isSensorInRange(sensor))) {

this.soundAlarm(sensor)
}

})
}

private soundAlarm (sensor) {
const location = this.sensorLocationMap.getLocation(sensor)
this.alarm.soundAlarm(location)
}

}

CRC Card for TemperatureMonitor

18

Class Name: TemperatureMonitor

State: sensors, maxTemp, minTemp, alarm
Responsibilities Collaborators

if any of the sensors is out of
range, tell the alarm to
sound at its location

TemperatureSensor

SensorLocationMap
IAlarm

IAlarm

19

Class Name: Ialarm (interface)

State: none
Responsibilities Collaborators

Interface for classes that will
sound an alarm

TemperatureMonitor

all implementations of
IAlarm

// sound alarm for issue at the given location
interface IAlarm { soundAlarm(location:Location): void }

SensorLocationMap

20

class SensorLocationMap {
private locationMap : Map<TemperatureSensor,Location> = new Map ()

// get the location, if any. If none, throw error
public getLocation (sensor:TemperatureSensor) : Location {

if (this.locationMap.has(sensor)) {
return this.locationMap.get(sensor)

} else {
throw new Error (`sensor ${sensor} location unknown`)

}
}

// methods to add and remove sensors from the map...

}

CRC Card for SensorLocationMap

21

Class Name: SensorLocationMap

State: Map from Sensors to their Location
Responsibilities Collaborators

Maintain the map from Sensors
to their Location

TemperatureMonitor

FireAlarm
• A hypothetical

implementation of IAlarm

22

Class Name: FireAlarm

State: socket for communicating with Fire
Dept

Responsibilities Collaborators

when sounded, call the FireDept IFireDept
when FireDept responds, turn
off alarm

Mapping the Conspiracy

23

Class Name: TemperatureSensor (interface)
State: none

Responsibilities Collaborators
establish interface for
thermometers in the
system

RefrigeratorThermo
meter

OvenThermometer
etc.
TemperatureMonitor

Class Name: TemperatureMonitor
State: sensors, maxTemp, minTemp, alarm

Responsibilities Collaborators
if any of the sensors is out of
range, tell the alarm to sound
at its location

TemperatureSensor

SensorLocationMap
IAlarm

Class
Name:

Ialarm (interface)

State: none
Responsibilities Collaborators

Interface for classes
that will sound an
alarm

TemperatureMon
itor

all
implementations
of IAlarm

Class Name: SensorLocationMap

State: Map from Sensors to their Location
Responsibilities Collaborators

Maintain the map from
Sensors to their Location

TemperatureMonitor

Class
Name:

FireAlarm

State: socket for
communicating with Fire
Dept

Responsibilities Collaborators
when sounded, call
the FireDept

IFireDept

when FireDept
responds, turn off
alarm

Review: Learning Objectives for this Lesson
• You should now be able to:

• Explain what it means to document a design
• Describe the importance of having a shared vocabulary

• for teams,
• for communicating with management
• for dealing with clients

• Illustrate the basics of CRC cards

24

Next steps...
• In our next lesson, we'll talk about UML, a far more

elaborate system for documenting designs

25

