
CS 4350: Fundamentals of Software Engineering
CS 5500: Foundations of Software Engineering

Lesson 2.2 Introduction to UML

Jon Bell, John Boyland, Mitch Wand
Khoury College of Computer Sciences

1

Learning Objectives for this Lesson
• By the end of this lesson you should be able to:

• Read and write simple UML class diagrams
• Illustrate some ways that UML class diagrams may be

realized in code
• Read and write simple UML sequence diagrams

2

Unified Modeling Language
• UML is a general-purpose visual modeling

language developed by an industry
consortium in 1997.

• Based on multiple prior visual modeling
languages.

• Goal was to have a single standard
representation for a large number of SE
tasks.

• A large language: 13 different kinds of
diagrams

• Currently, UML is at version 2.5.1
(December 2017)

3

See UML.org and
https://www.omg.org/spec/UML/

UML in the context of this course
• We are interested in UML as a human-to-human

language.
• So we expect your UML diagrams to "look like"

UML diagrams, but we are not interested in every
last detail of the notation.
• We just want your diagrams to communicate the

important things, with detail as necessary.

Most common diagram: the Class Diagram
• Class Diagram: Which objects do we need?

• Which are the features of these objects?
(attributes, methods)

• How can these objects be classified?
(is-kind-of hierarchy, both via inheritance and interface)

• What associations are there between the classes?

5

Class Diagrams
• A Class is drawn as a three-part

box containing:
- class name (required)
- list of attributes with names

and types (optional)
- list of methods with

argument lists (optional)

• Components with special roles
may be annotated with
"stereotypes", which are
written with <<...>>.

6

Name

Attribute1 : type1
Attribute2 : type2

method1 (signature) : type1
method2 (signature) : type2

Attributes
• The attributes of a class are roughly those members

(or "instance variables" or "properties", depending
on what language you are writing in) whose values
are either
• scalars ("simple" attributes)
• arrays or lists of scalars ("multivalued" attributes)
• simple structs (e.g. dates or names)

• Class members whose values are full-fledged
objects (of this or some other class) are usually
represented in UML as relationships.

In TypeScript, functions
are values, so for us an
attribute could have a
value that is a function.
Your real boss may or may
not agree.

Attributes: Example

8

attribute1 is simple.

attribute2 is multivalued (there can
be up to five values stored on
attribute2)

domain is UML terminology for
“type”

Relationships
• UML has notations for 3 kinds of relationship

between classes:
• Most general relationship: association
• Special cases:

• Generalization
• Aggregation

9

Relationship #1: Association
• An association is a simple semantic relationship between

two objects that indicates a link or dependency between
them.

• Examples:
• a portfolio is associated with an investor
• every sale is associated with the sales representatives that worked

on the sale
• every student is associated with a transcript

• Associations can be directed, meaning there is a relationship
from one object to another, or bi-directional, meaning the
relationship works both ways.

• Relationships may be annotated with descriptions.
• An association may be implemented in several possible

ways.

10

from A2, you can get to the
associated object of B2

Properties of Associations: Navigability
• Associations can be navigable, meaning that from

one object, you can find the associated object.
• A navigable association is notated with an arrow to

indicate the direction in which it flows.
• An association with no arrows means that

navigability is unspecified.

11

Properties of Associations:
Cardinality (or Multiplicity)
• The relationship between two entities has an

associated cardinality or multiplicity
• multiplicity is expressed with specific numbers or ranges,
• e.g.: 1:1..2 or 1:1..N

• Examples:
• A student is associated with exactly one transcript (1:1)

• One student, one transcript.
• Every course is taught by a professor, but a professor must

teach at least one course (1:1..*)
• One course, one professor. One professor, one or more courses.

• An address may have a zip code (1:0..1)
• One address, zero or one zip code

12

Notation for Cardinality in Associations

13

Any given instructor teaches 1 course.
Any given course is associated with one instructor.

Instructor Course

1 1

teaches ►

Any given instructor teaches 1 or more courses.
Any given course is associated with one instructor.

Instructor Course

1 1..*

teaches ►

Any given instructor teaches at least 1 and up to 10 courses.
Any given course is associated with one instructor.

Instructor Course

1 1..10

teaches ►

If no cardinality is specified, it defaults to 1.Instructor Course

1..*

teaches ►

Note: the solid triangle indicates how a
human should interpret the relationship
("Instructor teaches Course"). It does
not indicate navigability (from an
instructor, can you find the list of courses
they teach?)

Full Association Specification

14

Multiplicity
(* means unbound)

Role Name

Name Label

Constraint on
relationship

Constraint
on role

Key/Qualifier

Student

«key» studentID: text
major: text
matrStatus: Boolean = false

Course

«key» courseNo: text
title: text

register(studentID) : void

studentID

courseNo
Participant

0..*

attends

{prequisites met}

Class

0..6
{ordered}

The UML folks tried to
think of everything you
could possibly say about an
association. Like much
about SE, you only need to
memorize the parts you
need.

Associations should reflect something about
the real world

15

Partial Translation:

We have discovered that a
loan can be paid out in
multiple disbursements.
There does not appear to be
any limit to the number of
disbursements. In addition,
each loan is given to a single
student. Apparently,
students cannot share loans.

What world are we modeling?
• Sometimes the world we are modeling is not the

real world, but the world of entities in our program

16

Discussion Question: Which
parts of this chart
represent things in the
real world, and which
parts represent things
that only live in our
computers?

Relationship #2: Generalization
• Generalization is a grouping of entities based on

common attributes.
• describes an is-a-kind-of relationship between entities

17

Generalization
• more general as you move up
• more specific as you move down
• more specific may inherit attributes

and operations from the more general
• may specialize attributes and operations

18

Northeastern Person

Employee Student

Faculty

Staff

Graduate

Undergraduate

Generalization in UML

19

salary: text

Instructor

major: text

Student

name: text

Person

THESE ARE EQUIVALENT

Interfaces and "implements"
• In UML, the "implements" relation is generally

considered to be a form of generalization.
• An interface is typically notated like a class, but

with the stereotype <<interface>>.
Alternatively, the name of the interface may be
given in italics.
• The "implements" relationship may be notated

with a dotted or dashed line, or by an open-headed
arrow.

Relationship #3: Aggregation
• A car has 3–4 wheels

21

The solid arrow indicates
the way we should read
"has" (a car "has" wheels,
not wheels "has" a car).

Discussion Question: What
should the navigability of
this association be?
Should we be able to get
from a Car to the Wheels
that it has? Should we
be able to get from Wheel
to Car?

Aggregation: Definition
• Aggregation is an association that means

a “whole/part” or “containment”
relationship.
• The distinction between association and

aggregation is not always clear.
• Don't stress about this: If in doubt,

notate the relationship as a simple
association.

22

What relation is portrayed in each
of these diagrams? What should
its navigability be?

A second kind of UML Diagram:
Sequence Diagrams
• Shows the flow between elements of a system (the

messaging sequence)
• Classes (instances of classes)
• Components
• Subsystems
• Actors

• Time is explicitly shown and flows from top to
bottom

23

Example

24

t

Another Example

25

t

Activate Entity

Destroy Entity

Deactivate Entity

Review: Learning Objectives for this Lesson
• At this point you should be able to:

• Read and write simple UML class diagrams
• Illustrate some ways that UML class diagrams may be

realized in code
• Read and write simple UML sequence diagrams

26

Next steps...
• Come to class prepared with questions!
• In our next lessons, we will explore design patterns,

which are yet another language for explaining
objects and their interactions.

27

