CS 4350: Fundamentals of Software Engineering
CS 5500: Foundations of Software Engineering

Lesson 2.3 Design Patterns

Jon Bell, John Boyland, Mitch Wand
Khoury College of Computer Sciences

© 2021 Jonathan Bell, John Boyland and Mitch Wand. Released
under the CC BY-SA license

https://creativecommons.org/licenses/by-sa/4.0/

Outline of Lessons 2.3 and 2.4

* Introduction to patterns:
* what are they?
* what are they good for?

* Review of patterns you probably know
* Adapter
* Composite
* |terator
* Some patterns you may or may not know
 Singleton
* Observer (sometimes called Listener, or Publish/Subscribe)
* Visitor

Learning Objectives for this Lesson

* By the end of this lesson you should be able to:

* Define what a design pattern is and the role it plays in
the Software Development process

* Explain and illustrate the following patterns
* Adapter
* Composite
* [terator

What is a design pattern?

* Think of it as advice from a master to a novice.
* A master chef may advise a novice on knife technique
* A golf pro may advise a novice about their swing

e A piano teacher may advise a student about their
posture, or how to interpret a piece

» Often these pieces of advice are stylized and
recorded

» eg "keep your elbow straight" (golf) "use the tip of your
knife as a fulcrum" (knife technique)

* Maybe in a book of "technique”
* Maybe on YouTube
* etc.

What is in such a piece of advice?

* A problem to be solved
* "the golf ball keeps flying off to the side"
* "it's taking too long to chop the carrots"

* A technique or method for solving the problem

* The technique always needs to be adapted to the
problem at hand
* is the golf ball lying on a slope? what kind of slope?

* do you have a proper chopping board? what kind of
knife are you using?

Design Patterns in Architecture

e "A Pattern Language: Towns, Buildings,
Contruction” by Christopher Alexander (1977)

* introduced this idea to a wide community beyond
architects

A Pattern Language

Towns *Buildings Construction

Christopher Alexander
Sara Ishikawa - Murray Silverstein

Max Jacobson lngrdl-‘ksdahl King
Shlomo Angel

Gang of Four Book

* First (and only!) edition 1994

* Introduced this idea to object-oriented
design

e Started the "Software Patterns" movement

e Still #1 on Amazon in Object-Oriented
Software Design

Design Patterns
Elements of Reusable
Object-Oriented Software

Erich Gamma
Richard Helm
Ralph Johnson
John Vlissides

- - . oyt

Foreword by Grady Booch

ket |

A
>
"~
e
4
=
>~
7z
-
-
™
W
4
e
-
<
=
=
<
—_
v
v
2
N
7
>
-
~
R
O
" -
_—
-
Z
~
4
4
o
-
7o

Definition

* Alexander says:

"Each pattern describes a problem which occurs over
and over again in our environment, and then
describes the core of the solution to that problem, in
such a way that you can use this solution a million
times over, without ever doing it the same way

twice"

Elements of a Pattern

* the pattern name
This is the official
 the problem (when to apply the pattern) definition, taken from +the
. . GoF book.
* the solution (describes the elements that make up | A, vien ey get
the patte rn) around +o describing
patterus, their
* the consequences (the results and trade-offs of descriptions rarely mateh
applying the pattern) ATE GRS

Design Patterns are Controversial

* For the last 25 years, software experts have lined
up either as pattern fans or pattern skeptics

* Sometimes there are endless debates about
whether a given piece of code is or is not an
instance of a particular pattern.

* We are just not going to get into that.

* Take a chill pill!
* But keep your 5004/5010 notes close at hand.

* These patterns are tools in your toolbox.

10

Design Patterns are Everywhere

* Everytime you read a blog post or web page with
some code illustrations, you are using a design
pattern:

* a piece of code to solve a particular problem

* and which needs to be adapted to your particular
situation.

* But some patterns are classics that have names
that you should be familiar with.

11

Problem #1:

e Suppose we need to implement a stack, which has
the following interface:

// the usual stack operations
interface IStack<T> {
push(t: T) : void

pop() : T
size() : number

Of course, in Typescript

}] . .
* But we have a class List that implements IList: qoutd never do 4hiis

interface IList<T> { because in Typescript we
// add to end of list almost always use arrays
add(t:T): void to represent lists.

// remove last element of the list

remove() : T

// returns the number of elements in the list
size() : number

} 12

Solution: an Adapter

class Stack<T> implements IStack<T> {

// top of stack is at end of list
constructor (private payload: IList<T>) {}

public push(t: T): void {
this.payload.add(t);

¥

public pop(): T {
return this.payload.remove();

}

public size(): number {
return this.payload.size()

}

TIwportawt: if you do
something like this, be
sure to explain how the
list should be nterpreted
as a stack. (Remember
Design Privciple 21)

Problem #2:

* You need to represent data that is tree-like

* Example:
* shapes, from Week 1.
* A Shape is either

* asquare
* acircle
e or a compound of two shapes: a front shape and a back shape.

14

Solution: the Composite Pattern

«instiggge» We explained this example
m Week 1. Now we've just
front added a name for what
weightOfShape(): number back———M
translateShape(dx,dy):Shape 1ot almad\{ know.

N

(W) Notice the circular
QL dependency between

Circle (Square 1 Compound
pos: ScreenPosition pos: ScreenPosition SVMP& avml COW\PDMVM‘
radius: positive number That comes ﬁlOVl@ with
hierarchical (+ree-like)
| .o * | data. There's vo avoidivg

I+,

15

Problem #3:

* You need to systematically go through the elements

of some collection.

* Solution 1: Implement your collection using a type

that natively supports it.

* in TypeScript, this typically means an array (a list) or Map

* These are called internal iterators

const mylist : Shape[] = ...
mylist.map(shape => ...)
mylist.filter(shape => ...)
mylist.forEach(shape => ...)

for (s in mylist) {...}

The function that you

apply to each element of

the array is called the
callback.

Twuterval iterators like
these replace almost all
loops in TypeScript. If
yout are ot familiar with
them, go look thewm up.

TypeScript also allows iterators over Maps

type StudentTableOut = Map<StudentId,StudentDatalOut>

function countAllBins (studentMasterTable: StudentTableOut) {
let histo = [0,0,0] // a histogram with 3 bins
for (let student of studentMasterTable.keys()) {
let data = studentMasterTable.get(student)
for (let question of data.keys()) {
let questionData = data.get(question)
let bin = questionData.bin
histo[bin] += ...
}
}
return histo.map(n => n/(histo[@]+histo[1]+histo[2]))

17

Solution 2: Define an external iterator

* In TypeScript, there are ways of creating iterators
that integrate with things like for.

* Alas, these are way too complicated for us to do
right now.

18

The Iterator Pattern

 This is all quite a bit different from what's in the
GoF book

* This illustrates how patterns are dependent on the
programing language you are working in

* Much of the complexity of the pattern has now
been absorbed into the programming language
(even in different versions of JavaScript!)

19

Review: Learning Objectives for this Lesson

At this point you should be able to:

* Define what a design pattern is and the role it plays in
the Software Development process

* Explain and illustrate the following patterns
* Adapter
* Composite
* [terator

20

Next steps...

* In our next lesson, we will go on to explore three
more patterns that you may or may not be familiar
with:

 Singleton
* Listener
* Visitor

21

