
CS 4350: Fundamentals of Software Engineering
CS 5500: Foundations of Software Engineering

Lesson 2.3 Design Patterns

Jon Bell, John Boyland, Mitch Wand
Khoury College of Computer Sciences

1

© 2021 Jonathan Bell, John Boyland and Mitch Wand. Released
under the CC BY-SA license

https://creativecommons.org/licenses/by-sa/4.0/

Outline of Lessons 2.3 and 2.4
• Introduction to patterns:
• what are they?
• what are they good for?

• Review of patterns you probably know
• Adapter
• Composite
• Iterator

• Some patterns you may or may not know
• Singleton
• Observer (sometimes called Listener, or Publish/Subscribe)
• Visitor

2

Learning Objectives for this Lesson
• By the end of this lesson you should be able to:
• Define what a design pattern is and the role it plays in

the Software Development process
• Explain and illustrate the following patterns

• Adapter
• Composite
• Iterator

3

What is a design pattern?
• Think of it as advice from a master to a novice.
• A master chef may advise a novice on knife technique
• A golf pro may advise a novice about their swing
• A piano teacher may advise a student about their

posture, or how to interpret a piece
• Often these pieces of advice are stylized and

recorded
• eg "keep your elbow straight" (golf) "use the tip of your

knife as a fulcrum" (knife technique)
• Maybe in a book of "technique"
• Maybe on YouTube
• etc.

4

What is in such a piece of advice?
• A problem to be solved
• "the golf ball keeps flying off to the side"
• "it's taking too long to chop the carrots"

• A technique or method for solving the problem
• The technique always needs to be adapted to the

problem at hand
• is the golf ball lying on a slope? what kind of slope?
• do you have a proper chopping board? what kind of

knife are you using?

5

Design Patterns in Architecture
• "A Pattern Language: Towns, Buildings,

Contruction" by Christopher Alexander (1977)
• introduced this idea to a wide community beyond

architects

6

Gang of Four Book

7

• First (and only!) edition 1994
• Introduced this idea to object-oriented

design
• Started the "Software Patterns" movement
• Still #1 on Amazon in Object-Oriented

Software Design

Definition
• Alexander says:

"Each pattern describes a problem which occurs over
and over again in our environment, and then
describes the core of the solution to that problem, in
such a way that you can use this solution a million
times over, without ever doing it the same way
twice"

8

Elements of a Pattern
• the pattern name
• the problem (when to apply the pattern)
• the solution (describes the elements that make up

the pattern)
• the consequences (the results and trade-offs of

applying the pattern)

9

This is the official
definition, taken from the
GoF book.
Alas, when they get
around to describing
patterns, their
descriptions rarely match
this outline L

Design Patterns are Controversial
• For the last 25 years, software experts have lined

up either as pattern fans or pattern skeptics
• Sometimes there are endless debates about

whether a given piece of code is or is not an
instance of a particular pattern.
• We are just not going to get into that.
• Take a chill pill!
• But keep your 5004/5010 notes close at hand.

• These patterns are tools in your toolbox.

10

Design Patterns are Everywhere
• Everytime you read a blog post or web page with

some code illustrations, you are using a design
pattern:
• a piece of code to solve a particular problem
• and which needs to be adapted to your particular

situation.

• But some patterns are classics that have names
that you should be familiar with.

11

Problem #1:
• Suppose we need to implement a stack, which has

the following interface:

• But we have a class List that implements IList:

12

// the usual stack operations
interface IStack<T> {
push(t: T) : void
pop() : T
size() : number

}

interface IList<T> {
// add to end of list
add(t:T): void
// remove last element of the list
remove() : T
// returns the number of elements in the list
size() : number

}

Of course, in Typescript
you'd never do this,
because in Typescript we
almost always use arrays
to represent lists.

Solution: an Adapter

13

class Stack<T> implements IStack<T> {

// top of stack is at end of list
constructor (private payload: IList<T>) {}

public push(t: T): void {
this.payload.add(t);

}
public pop(): T {
return this.payload.remove();

}

public size(): number {
return this.payload.size()

}

}

Important: if you do
something like this, be
sure to explain how the
list should be interpreted
as a stack. (Remember
Design Principle 2!)

Problem #2:
• You need to represent data that is tree-like
• Example:
• shapes, from Week 1.
• A Shape is either

• a square
• a circle
• or a compound of two shapes: a front shape and a back shape.

14

Solution: the Composite Pattern

15

We explained this example
in Week 1. Now we've just
added a name for what
you already know.

Notice the circular
dependency between
Shape and Compound.
That comes along with
hierarchical (tree-like)
data. There's no avoiding
it.

Problem #3:
• You need to systematically go through the elements

of some collection.
• Solution 1: Implement your collection using a type

that natively supports it.
• in TypeScript, this typically means an array (a list) or Map
• These are called internal iterators

16

const mylist : Shape[] = ...
mylist.map(shape => ...)
mylist.filter(shape => ...)
mylist.forEach(shape => ...)

for (s in mylist) {...}

The function that you
apply to each element of
the array is called the
callback.

Internal iterators like
these replace almost all
loops in TypeScript. If
you are not familiar with
them, go look them up.

TypeScript also allows iterators over Maps

17

type StudentTableOut = Map<StudentId,StudentDataOut>

function countAllBins (studentMasterTable: StudentTableOut) {
let histo = [0,0,0] // a histogram with 3 bins
for (let student of studentMasterTable.keys()) {

let data = studentMasterTable.get(student)
for (let question of data.keys()) {

let questionData = data.get(question)
let bin = questionData.bin
histo[bin] += ...

}
}
return histo.map(n => n/(histo[0]+histo[1]+histo[2]))

}

Solution 2: Define an external iterator
• In TypeScript, there are ways of creating iterators

that integrate with things like for.
• Alas, these are way too complicated for us to do

right now.

18

The Iterator Pattern
• This is all quite a bit different from what's in the

GoF book
• This illustrates how patterns are dependent on the

programing language you are working in
• Much of the complexity of the pattern has now

been absorbed into the programming language
(even in different versions of JavaScript!)

19

Review: Learning Objectives for this Lesson
• At this point you should be able to:
• Define what a design pattern is and the role it plays in

the Software Development process
• Explain and illustrate the following patterns

• Adapter
• Composite
• Iterator

20

Next steps...
• In our next lesson, we will go on to explore three

more patterns that you may or may not be familiar
with:
• Singleton
• Listener
• Visitor

21

