
CS 4350: Fundamentals of Software Engineering
CS 5500: Foundations of Software Engineering

Lesson 2.4 Design Patterns (Part 2)

Jon Bell, John Boyland, Mitch Wand
Khoury College of Computer Sciences

1

© 2021 Jonathan Bell, John Boyland and Mitch Wand. Released
under the CC BY-SA license

https://creativecommons.org/licenses/by-sa/4.0/

Learning Objectives for this Lesson
• By the end of this lesson you should be able to:

• Explain and illustrate the following patterns
• Singleton
• Observer
• Visitor

2

Review: Definition of a Pattern
• Alexander says:

"Each pattern describes a problem which occurs over
and over again in our environment, and then
describes the core of the solution to that problem, in
such a way that you can use this solution a million
times over, without ever doing it the same way
twice"

3

Review: Design Patterns are Controversial
• You can get into endless debates about whether a

given piece of code is or is not a correct instance of
a particular pattern.
• We are just not going to get into that.
• These patterns are tools in your toolbox.
• But keep your 5004/5010 notes close at hand.

4

Problem #1: make sure there is only one
instance of a particular class
• Primary examples:

• a clock
• a storage allocator
• a generator for unique identifiers

5

Solution: The Singleton Pattern
• We'll do this in stages

6

A Simple Clock

7

export interface IClock {
// reset the tick counter to 0
reset(): void
// increment the tick counter
tick(): void
// returns the number of ticks since the last reset.
currentTime(): number

}

class Clock implements IClock {
private ticks = 0
public reset():void { this.ticks = 0 }
public tick():void { this.ticks++ }
public currentTime():number { return this.ticks }

}

A Clock Factory

8

class FactoryMadeClock implements IClock {
private ticks = 0
public reset():void { this.ticks = 0 }
public tick():void { this.ticks++ }
public currentTime():number { return this.ticks }

}

// no need to instantiate ClockFactory
// just say ClockFactory.getClock()
export default class ClockFactory {

public static getClock():IClock {return new FactoryMadeClock()}
}

This is an instance of the Factory Pattern (yet
another pattern whose name you should know).
This pattern doesn't add much value here, but it
would be helpful if you were building something more
complicated, e.g. an Amazon product listing.

Note that getClock is static,
so you don't need to
instantiate ClockFactory.

calling
ClockFactory.getClock()
returns a new clock

A Singleton Clock Factory

9

class Clock {
..same as before..

}

Make the factory's
constructor private, so that
no one can create another
one

Like the ClockFactory, but this
one cheats and only makes a
clock once. Then it returns that
same clock every time.

export default class SingletonClockFactory {
private constructor() {}

private static _theClock: Iclock

// have we initialized the clock?
private static _isInitialized : boolean = false

public static getClock() {
if (!this._isInitialized) {

this._theClock = new Clock()
this._isInitialized = true // it's initialized now

}
return this._theClock

}
}

Use a first-time-through
switch

Let's test this...

10

import {assert} from 'chai'
import SingletonClockFactory from './SingletonClockFactory'

function test1 () {
let clock1 = SingletonClockFactory.getClock()
let clock2 = SingletonClockFactory.getClock()
clock1.tick()
assert.equal(clock1.currentTime(),1)
clock1.tick()
assert.equal(clock1.currentTime(),2)
assert.equal(clock2.currentTime(),2, "clock2 should see clock1's ticks")
clock2.tick()
assert.equal(clock1.currentTime(),3, "clock1 should see clock2's ticks")

}

describe ('check that clock is a singleton', () => {
it('test1', test1)

})

Problem #2
• You have an object that changes state, and there

are many other objects in the system that need to
know this.
• But you don't know who they are–

• they may even be created after the object that is being
watched

• Example: we have a master clock, and other objects
need to know the current time.

11

Solution: The Observer Pattern
• Also called "publish-subscribe"
• The object being observed (the "subject") keeps a

list of the people who need to be notified when
something changes.
• When a new object wants to be notified when the

subject changes, it registers with ("subscribes to")
with the subject

12

Interfaces

13

export interface IPublishingClock {
// reset the tick counter
reset(): void
// increment the tick counter
tick(): void
// subscribe a new observer
subscribe(obs:ClockObserver) : void

}

export interface ClockObserver {
// action to take when clock ticks
onTick(time:number):void

// action to take when the clock resets
onReset():void

}

No 'getTime' method! The
clock pushes information to
the observers

The protocol is:
1. When the clock ticks, it

sends an onTick message
with the current time to
each subscriber
(observer)

2. When the clock resets, it
sends an onReset
message to each
subscriber.

3. When a new subscriber
registers, the clock
responds by sending it an
onTick message

Names like 'onTick' are
typical for methods in the
Observer pattern

The Clock

14

class Clock implements IPublishingClock {

// clock functionality
private clockTime = 0
public tick () {this.clockTime++; this.publishTickEvent()}
public reset() {this.clockTime=0; this.publishResetEvent()}

private observers : ClockObserver[]

// register responds with the current time, so the observer
// will be initialized
public subscribe(obs:ClockObserver): void {

this.observers.push(obs);
obs.onTick(this.clockTime)

}
private publishTickEvent() {

this.observers.forEach(obs => {obs.onTick(this.clockTime)})
}

private publishResetEvent() {
this.observers.forEach(obs => {obs.onReset()})

}
}

Push vs Pull
• In the simple model (like the one in singleton), a

client pulled information from the clock.
• In the observer model, the clock pushes

information to its clients

15

Exercise: Draw UML sequence
diagrams for the simple clock
and for the publishing clock.

Last Problem
• You have a hierarchical structure, and there are

many operations that will need to traverse it.
• You don't know in advance what those operations

will be.
• But each operation can be implemented

imperatively, perhaps by accumulating the answer
in some variable.
• Also, you'd like to keep the internal organization of

each node in the structure hidden from the
operation.

16

Solution: The Visitor Pattern
• Represent each operation as a class, with a method

for each kind of node you have.
• To invoke the operation, create a new object of the

Visitor class.
• Then send the visitor to the node.
• The node calls back the appropriate method of the

visitor, and then sends the visitor on to each of its
children.

17

This is called the
Visitor class.

Let's call that the
visitor (with a small
v).

Let's apply this to the shapes example

18

// operates on a node
// the node itself is responsible for invoking the
// visitor on its descendants, if any.
interface ShapeVisitor {

visitCircle(c:Circle): void
visitSquare(sq:Square): void
visitCompound(c:Compound): void

}

// a Shape is any class that will accept a Shape Visitor
interface Shape {

// calls back the appropriate method of the visitor.
// also sends the visitor to each child of the shape
accept (v:ShapeVisitor) : void

}

I think 'accept' is a terrible
name for this, but it's what
everybody calls it. So if you
see a method called 'accept'
or 'acceptVisitor' in a
codebase, that probably
means that there's a visitor
pattern here.

A typical shape definition

19

class Compound implements Shape {

public accept (v:ShapeVisitor) {
// apply the visitor using in-order traversal
this.back.accept(v);
v.visitCompound(this);
this.front.accept(v)}

constructor(private front:Shape, private back:Shape){}

public getFront () : Shape { return this.front }
public getBack () : Shape { return this.back }

}

The front and back
properties are private to
preserve encapsulation.
We need getters to make
their values available to
v.visitCompound. Or you
could make them public if you
wanted to allow the visitor
(or anybody else) to change
them.

When a Compound accepts a
visitor, it
1. Passes the visitor on to

its back shape.
2. Sends itself to the

appropriate method of
the visitor for local
processing

3. Passes the visitor on to
its front shape.

It's up to the node to decide
the order in which these
operations happen. This
order is called in-order
traversal. Other possible
orders are called pre-order,
and post-order You should
have learned what those
mean back in your data
structures class. If you
didn't, go look it up. It's
important vocabulary for any
computer scientist.

A typical visitor

20

// creates a list of all the ScreenPositions in the shape that
// it visits.
// retrieve the final answer with getPositions()
class ListPositionsVisitor implements ShapeVisitor {

// a list in which to accumulate the positions as we find them
private positions : ScreenPosition[] = []

// for Circle or Square, accumulate their position in the list
public visitCircle (c:Circle) {this.positions.push(c.getPos())}
public visitSquare (sq:Square) {this.positions.push(sq.getPos())}

// a Compound does not have a position, so there's
// nothing to do here. The node will be responsible for visiting
// its children. In any case, the accept method does all the work
public visitCompound (c:Compound) {}

// report the results
public getPositions() {return this.positions}

}

IMPORTANT: Here the
visitCircle method can be
sure that its argument is a
Circle, not just a Shape. So
we can be sure it has a
getPos method. If we only
knew that c was a Shape,
we couldn't be sure that it
had such a method.

Exercise: Draw UML sequence
diagrams for the invocation
of a visitor

Package this up as a function

21

// given a Shape, returns a list of all the ScreenPosition
s
// in the Shape.
function shape2list(shape: Shape): ScreenPosition[] {

let newVisitor = new ListPositionsVisitor()
shape.accept(newVisitor)
return newVisitor.getPositions()

}

Exercise: Draw UML sequence
diagrams for the invocation
of a visitor

Applying the
DRY Principle...

Many variations
• Instead of returning itself, the node could return

some of its fields, or hide others from the visitor.
• It's also possible to have visitors that return values,

by writing something like

• but getting the types right requires some care– look
at the example code if you want to see how it's
done.

22

interface ShapeVisitor<T> {
visitCircle(c:Circle): T
visitSquare(sq:Square): T
visitCompound(c:Compound): T

}

Review: Learning Objectives for this Lesson
• You should now be able to explain and illustrate the

following patterns:
• Singleton
• Observer
• Visitor

23

Next steps...
• Come to class armed with questions.
• Next week, we'll zoom out to even larger program

structures and talk about software architectures.

24

