
CS 4350: Fundamentals of Software Engineering
CS 5500: Foundations of Software Engineering

Lesson 3.1 Software Architectures

Jon Bell, John Boyland, Mitch Wand

Khoury College of Computer Sciences

1

© 2021 Jonathan Bell, John Boyland and Mitch Wand. Released
under the CC BY-SA license

https://creativecommons.org/licenses/by-sa/4.0/

Learning Objectives for this Lesson

• By the end of this lesson you should be able to:
• explain why software architecture is important

• list a few of the properties that an architecture may
have (the "ilities")

• describe the basic ideas of the following architectures,
with examples and pictures
• monolithic

• layered

• pipeline

• microkernel

• event-driven

• microservice

2

Design in this class so far: the details
• Metaphor: building architecture

TodoItem

name: string
dueDate: date
list: TodoList

TodoList

name: string
items: TodoItem[]

1*

Design at larger scales

• Metaphor: building
architecture

• How do the pieces fit
together? What do we
reuse?

Design at larger scales

• Metaphor: building
architecture

• How do the pieces fit
together? What do we
reuse?

• How do we organize
into teams?

Design at larger scales

• How well will our system work in its context?

Goal: Create a high-level model of the
system
• Abstract details away into reusable components

• Allows for analysis of high-level design before
implementation

• Enables exploration of design alternatives

• Reduce risks associated with building the software

Properties of Software Architectures
(the "ilities")

Table 4-1. Common operational architecture characteristics

Term Definition

Availability How long the system will need to be available (if 24/7, steps need to be in place to allow the system
to be up and running quickly in case of any failure).

Continuity Disaster recovery capability.

Performance Includes stress testing, peak analysis, analysis of the frequency of functions used, capacity required,
and response times. Performance acceptance sometimes requires an exercise of its own, taking
months to complete.

Recoverability Business continuity requirements (e.g., in case of a disaster, how quickly is the system required to be
on-line again?). This will affect the backup strategy and requirements for duplicated hardware.

Reliability/safety Assess if the system needs to be fail-safe, or if it is mission critical in a way that affects lives. If it fails,
will it cost the company large sums of money?

Robustness Ability to handle error and boundary conditions while running if the internet connection goes down
or if there’s a power outage or hardware failure.

Scalability Ability for the system to perform and operate as the number of users or requests increases.

8

from Richards & Ford: Fundamentals of Software Architecture

More ilities...

Table 4-2. Structural architecture characteristics

Term Definition

Configurability Ability for the end users to easily change aspects of the software’s
configuration (through usable interfaces).

Extensibility How important it is to plug new pieces of functionality in.

Installability Ease of system installation on all necessary platforms.

Leverageability/reuse Ability to leverage common components across multiple products.

Localization Support for multiple languages on entry/query screens in data fields; on
reports, multibyte character requirements and units of measure or
currencies.

Maintainability How easy it is to apply changes and enhance the system?

Portability Does the system need to run on more than one platform? (For example,
does the frontend need to run against Oracle as well as SAP DB?

Supportability What level of technical support is needed by the application? What level of
logging and other facilities are required to debug errors in the system?

Upgradeability Ability to easily/quickly upgrade from a previous version of this
application/solution to a newer version on servers and clients.

9from Richards & Ford: Fundamentals of Software Architecture

And still more ilities

Table 4-3. Cross-cutting architecture characteristics

Term Definition

Accessibility Access to all your users, including those with disabilities like colorblindness or hearing loss.

Archivability Will the data need to be archived or deleted after a period of time? (For example, customer accounts
are to be deleted after three months or marked as obsolete and archived to a secondary database for
future access.)

Authentication Security requirements to ensure users are who they say they are.

Authorization Security requirements to ensure users can access only certain functions within the application (by
use case, subsystem, webpage, business rule, field level, etc.).

Legal What legislative constraints is the system operating in (data protection, Sarbanes Oxley, GDPR, etc.)?
What reservation rights does the company require? Any regulations regarding the way the
application is to be built or deployed?

Privacy Ability to hide transactions from internal company employees (encrypted transactions so even DBAs
and network architects cannot see them).

Security Does the data need to be encrypted in the database? Encrypted for network communication
between internal systems? What type of authentication needs to be in place for remote user access?

Supportability What level of technical support is needed by the application? What level of logging and other
facilities are required to debug errors in the system?

Usability/achievability Level of training required for users to achieve their goals with the application/solution. Usability
requirements need to be treated as seriously as any other architectural issue.

10from Richards & Ford: Fundamentals of Software Architecture

• We don't have time to study these in any detail, or
to try to discuss how any particular architecture
might rate on any of them.

• You could write a whole book about that...

11

Our goal:

• Just talk about some different top-level
organizations.

• Knowing the top-level organization gives you the
first clue about
• how to understand the system

• where to look for bugs or explain behaviors

• how to organize into teams

• how to find modification and extension points

12

Remember the overall

goal of making software

systems understandable

by humans.

Architecture #0: Monolithic

• A single app, with no particular
organization

• Also known as: "spaghetti code"

• May still have useful interfaces for
some degree of encapsulation and
modularity.
• but is there a method to the madness?

13

Brian Foote and Joe Yoder

Shakespeare, Hamlet. The exact quote is: "Though

this be madness, yet there is method in't" (Polonius,

Act 2, Scene 2)

Architecture #0: Monolithic

• OK for single-developer, short-lived
projects

• But
• what happens if you want to add a new

developer

• what happens if you need to come back
to the code later?

14

Brian Foote and Joe Yoder

Architecture #1: Layered

• Each layer depends on
services from the layer
or layers below

• Organize teams by Layer
• different layers require

different expertise

• When the layers are run
on separate pieces of
hardware, they are
sometimes called "tiers"

15

Layered Architecture (contd)

• Typical organization for
operating systems

• Layers communicate
through procedure calls and
callbacks (sometimes called
"up-calls")

16

Architecture #2: Pipeline

• Good for complex straight-line
processes, eg image processing

17

Also good for visualizing hardware

18

How do the stages communicate?

• That's the next-level decision
• data-push (each stage invokes the next)

• demand-pull (each stage demands data from its
predecessor)

• queues? buffers?

• ??

19

Architecture #3: Plugins ("microkernel")

• System consists of a small core (the
"microkernel") for essential
functions, and lots of hooks for
adding other services

• Highly extensible

• Plug-ins can be designed by small,
less-experienced teams– even by
users!

• Connection methods may vary

20

Plugin Examples

• Many examples:
• Visual Studio Code (internal org. + extension marketplace)

• emacs (emacs-lisp + hooks)

• git clients

21

$ ls .git/hooks
applypatch-msg.sample pre-applypatch.sample pre-rebase.sample
commit-msg.sample pre-commit.sample pre-receive.sample
fsmonitor-watchman.sample prepare-commit-msg.sample update.sample
post-update.sample pre-push.sample

Express.js uses a microkernel architecture

• express.js depends on plug-ins:

22

app.get('/transcripts', (req,res) => {
console.log('Handling GET/transcripts')
let data = db.getAll()
console.log(data)
res.status(200).send(data)

})

app.get is a hook that
adds a handler to the
server. The handlers
are ordered (the first
matching handler is
executed), and can be
pipelined, so a handler
can invoke another
handler if desired.

Architecture #4: Event-Driven Architecture
• Metaphor: a bunch of

bureaucrats shuffling papers
• Each processing unit has an

in-box and one or more out-
boxes

• Each unit takes a task from
its inbox, processes it, and
puts the results in one or
more outboxes.

• Stages are typically
connected by asynchronous
message queues.

• Conditional flow

23

Architecture #5: Microservices

• Overall task is divided into different components

• Each component is implemented independently

• Each component is
• independently replaceable,

• independently updatable

• Components can be built as libraries, but more usually as
web services
• Services communicate via HTTP, typically REST (see lesson 3.3)

24

Microservices: Schematic Example

25

Productivity

App

Frontend

“Dumb”

App

Server

Mod 1
REST

service

Database

Mod 2
REST

service

Database

Mod 3
REST

service

Database

Mod 4
REST

service

Database

Mod 5
REST

service

Database

Mod 6
REST

service

Database

REST

Todos
NodeJS, MongoDB

Mailer

Java, MySQL

Logins

Google Service

Search Engine

Java, Neo4J

Analytics

C#, SQLServer

Social Crawler

Python, MongoDB

Different languages,

different operating

systems

Microservice Advantages and Disadvantages

• Advantages
• services may scale differently, so can be implemented on

hardware appropriate for each (how much cpu, memory,
disk, etc?). Ditto for software (OS, implementation
language, etc.)

• services are independent (yay for interfaces!) so can be
developed and deployed independently

• Disadvantages
• service discovery?
• should services have some organization, or are they all

equals?
• overall system complexity

26

Microservices are (a) highly scalable and (b)
trendy

• Microservices at Netflix:
• 100s of microservices

• 1000s of daily production changes

• 10,000s of instances

• BUT:

• only 10s of operations engineers

27

https://medium.com/refraction-tech-everything/how-netflix-works-the-hugely-simplified-complex-stuff-that-happens-
every-time-you-hit-play-3a40c9be254b

https://medium.com/refraction-tech-everything/how-netflix-works-the-hugely-simplified-complex-stuff-that-happens-every-time-you-hit-play-3a40c9be254b

Microservices vs Monoliths

28

• Martin Fowler’s Microservices Guide - https://martinfowler.com/microservices/

higher is better

https://martinfowler.com/microservices/

Review: Learning Objectives for this Lesson

• You should now be able to:
• explain why software architecture is important

• list a few of the properties that an architecture may
have (the "ilities")

• describe the basic ideas of the following architectures,
with examples and pictures
• monolithic

• layered

• pipeline

• microkernel

• event-driven

• microservice

29

Next steps...

30

• In the remaining lessons of this week, we will learn
about http, RESTful protocols, and express.js, with
the goal of building a small but non-trivial REST
server in express.js.

	CS 4350: Fundamentals of Software Engineering CS 5500: Foundations of Software Engineering Lesson 3.1 Software Architectures
	Learning Objectives for this Lesson
	Design in this class so far: the details
	Design at larger scales
	Design at larger scales
	Design at larger scales
	Goal: Create a high-level model of the system
	Properties of Software Architectures (the "ilities")
	More ilities...
	And still more ilities
	Slide 11
	Our goal:
	Architecture #0: Monolithic
	Architecture #0: Monolithic
	Architecture #1: Layered
	Layered Architecture (contd)
	Architecture #2: Pipeline
	Also good for visualizing hardware
	How do the stages communicate?
	Architecture #3: Plugins ("microkernel")
	Plugin Examples
	Express.js uses a microkernel architecture
	Architecture #4: Event-Driven Architecture
	Architecture #5: Microservices
	Microservices: Schematic Example
	Microservice Advantages and Disadvantages
	Microservices are (a) highly scalable and (b) trendy
	Microservices vs Monoliths
	Review: Learning Objectives for this Lesson
	Next steps...

