
CS 4350: Fundamentals of Software Engineering
CS 5500: Foundations of Software Engineering

Lesson 3.3: REST Protocols

Jon Bell, John Boyland, Mitch Wand

Khoury College of Computer Sciences

1

© 2021 Jonathan Bell, John Boyland and Mitch Wand. Released
under the CC BY-SA license

https://creativecommons.org/licenses/by-sa/4.0/

Learning Objectives for this Lesson

• By the end of this lesson you should be able to:
• Explain the basic principles of RESTful protocols

• Examine a protocol and suggest ways in which it either
adheres to or violates the REST principles.

2

Your app relies on other apps for
services
• Authentication (Login with Google/Apple/Facebook)

• Sending/receiving email (SendGrid, MailGun, MailChimp)

• Telephony, text messaging, video chat (Twilio)

Productivity App

Frontend

“Dumb”

App Server

Mod 1

REST service

Database

Mod 2

REST service

Database

Mod 3

REST service

Database

Mod 4

REST service

Database

Mod 5

REST service

Database

Mod 6

REST service

Database

REST

Todos

NodeJS, MongoDB

Mailer

Java, MySQL

Logins

Google Service

Search Engine

Java, Neo4J

Analytics

C#, SQLServer

Social Crawler

Python, MongoDB

What we'd like
• A magic abstraction: remote procedure call (RPC)

Caller Machine Callee Machine

User Code User Code

local
call

local
call

local
return

work

local
return

Obstacles to magic RPC

• transmission delays (latency)

• can the client do something useful in the
meantime?
• asynchrony

• "mask latency with multiprocessing" → complexity

• client/server mismatch
• different languages,

• different data representations

• → wire-transmission formats

• →more complexity

5

A Solution(?): use the web!

• Implement your protocol via http.

• Of course, then you have to define your protocol

• You'll want to define it in some standard
metalanguage, so client and server can agree on its
meaning.

• But that means the client-human and server-
human have to agree on a standard metalanguage

• Lots of choices: XML/RPC, SOAP, WSDL, or ...

6

Link layer

Network layer

TCP

XML/RPC or SOAP

or REST or ...

HTTP

Aagh!

7

Now take a deep breath, and start again...

8

HTTP Step 3:
Server interprets the Request

9

GET /docs/index.html HTTP/1.1
Host: www.nowhere123.com
Accept: image/gif, image/jpeg, */*
Accept-Language: en-us
Accept-Encoding: gzip, deflate
User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1)
(blank line)

• This request probably started out as
http://www.nowhere123.com/docs/index.html

• www.nowhere123.com identifies the host (the server's location)

• the rest of the request is the path, here /docs/index.html

• this might be a path in the server's file system,

• OR it could be anything at all—

• it's entirely up to the server to interpret the path

http://www.nowhere123.com/

That means the client can ask the server to
do things other than retrieve files

• Just has to be an agreement (a protocol) between
client and server about how these tasks are to be
described.

• Need a general framework to help us design such
protocols.

• We will talk about one such philosophy, called REST

10

REST: Representational State Transfer
• Defined by Roy Fielding in his 2000 Ph.D. dissertation

• “Throughout the HTTP standardization process, I was
called on to defend the design choices of the Web. That
is an extremely difficult thing to do... I had comments
from well over 500 developers, many of whom were
distinguished engineers with decades of experience.
That process honed my model down to a core set of
principles, properties, and constraints that are now
called REST.”

• Not just a transport protocol, not a protocol definition
language: a design philosophy

• Interfaces that follow REST principles are called RESTful

http://www.ics.uci.edu/~fielding/pubs/dissertation/fielding_dissertation.pdf

REST Principles
• Single Server

• Client calls server, server responds. That's it.
• Separation of concerns: client doesn't worry about data, server

doesn't worry about UI
• Server may pass request on to other machines, but that's not visible

to the client

• Stateless
• No session state in the server
• Each client request must contain all the information the server

needs to process the request

• Uniform Interface
• associate URIs with resources

• Uniform Cacheability
• requests must classify themselves as cacheable or not.

12

Single Server
• Server is abstracted as a single box

• Client calls the server, server doesn’t call the client

• Enables separation of concerns:
• Client doesn’t worry about how the server does its

business

• Server doesn't worry about UI

Client

Server

Client sees only a single server
• Enables flexible design:

different servers can have
different responsibilities, but
client sees just a single server

External

Cache

Web

Servers

App

Servers

Database

servers

Internal

Cache

Misc

Services

Clients

Client sees none
of this!

Stateless

• Each client request contains all
information necessary to service
the request
• The client doesn't have to write a

sequence of requests to get their
work done.

• So requests can be farmed out to
different servers

15

Client

Server

Server

Server

Request 1

Uniform Interface
• URIs should hierarchically identify nouns describing

resources that exist

• Actions that can be taken with resources are
specified by the HTTP methods (verbs)

• more on this later

Uniform cacheability
• Requests and responses are clearly classified as

cacheable or not

• Enables use of generic caches that don’t know
anything about the structure of what they cache -
just what can be cached

Client

Server

Server

Server

Request 1

3rd party cache

This involves more

systems stuff than we

will normally get involved

with, so you don't have to

worry about this

immediately.

Back to Uniform Interface:
Nouns are represented as URIs

• In a RESTful system, the server is visualized as a store of
resources (nouns), each of which has some data
associated with it.

• URIs represent these resources

• Examples:
• /cities/losangeles
• /transcripts/00345/graduate (student 00345 has

several transcripts in the system; this is the graduate one)

• Anti-examples:
• /getCity/losangeles
• /getCitybyID/50654
• /Cities.php?id=50654

18

Useful heuristic: if you

were keeping this data in

a bunch of files, what

would the directory

structure look like?

But you don't have to

actually keep the data in

that way. See Lesson

3.4.

We prefer plural nouns for

toplevel resources, as you

see here.

Verbs are represented as http methods

• In REST, there are four things you can do with a
resource

• POST: requests the server to create a resource
• there are several ways in which the value for the new

resource can be transmitted (more In a minute)

• GET: requests the server to respond with a
representation of the resource

• PUT: requests the server to replace the value of the
resource by the given value

• DELETE: requests the server to delete the resource

19

You say you want parameters?

There are at least 3 ways to associate parameters with a request:
• path parameters. These specify portions of the path to the resource. For

example, your REST protocol might allow a path like

/transcripts/00345/graduate

• query parameters. These are part of the URI and are typically used as
search items. For example, your REST protocol might allow a path like

/transcripts/graduate?lastname=covey&firstname=avery

• body parameters. These are like query parameters, except that they are
placed in the first line of the body. This is typically done only for POST or
PUT requests.

20

This part is not

quite right. You

can put

additional

parameters in

the body, using

any coding that

you like.

Example interface #1: a todo-list
manager
• Resource: /todos

• GET /todos - get list all of my todo items

• POST /todos - create a new todo item (data in body)

• Resource: /todos/:todoItemID
• :todoItemID is a path parameter

• GET /todos/:todoItemID - fetch a single item by id

• PUT /todos/:todoItemID - update a single item (new
data in body)

• DELETE /todos/:todoItemID - delete a single item

Here the whole body

becomes a parameter;

see the next slide for

another possibility.

Example Interface #2: a database of
transcripts

22

POST /transcripts
-- adds a new student to the database,
-- returns an ID for this student.
-- requires a body parameter 'name', url-encoded (eg name=avery)
-- Multiple students may have the same name.
GET /transcripts/:ID
-- returns transcript for student with given ID. Fails if no such student
DELETE /transcripts/:ID
-- deletes transcript for student with the given ID, fails if no such student
POST /transcripts/:studentID/:courseNumber
-- adds an entry in this student's transcript with given name and course.
-- Requires a body parameter 'grade', url-encoded
-- Fails if there is already an entry for this course in the student's transcript
GET /transcripts/:studentID/:courseNumber
-- returns the student's grade in the specified course.
-- Fails if student or course is missing.
GET /studentids?name=string
-- returns list of IDs for student with the given name

Remember the heuristic:

if you were keeping this

data in a bunch of files,

what would the directory

structure look like?

Didn't seem to fit

the model, sorry 

Review: Learning Objectives for this Lesson

• You should now be able to:
• Explain the basic principles of RESTful protocols

• Examine a protocol and suggest ways in which it either
adheres to or violates the REST principles.

23

Next steps...

24

• In our next lesson, we'll build a server for the
transcript protocol, using express.js.

	CS 4350: Fundamentals of Software Engineering CS 5500: Foundations of Software Engineering Lesson 3.3: REST Protocols
	Learning Objectives for this Lesson
	Your app relies on other apps for services
	What we'd like
	Obstacles to magic RPC
	A Solution(?): use the web!
	Aagh!
	Now take a deep breath, and start again...
	HTTP Step 3: Server interprets the Request
	That means the client can ask the server to do things other than retrieve files
	REST: Representational State Transfer
	REST Principles
	Single Server
	Client sees only a single server
	Stateless
	Uniform Interface
	Uniform cacheability
	Back to Uniform Interface: Nouns are represented as URIs
	Verbs are represented as http methods
	You say you want parameters?
	Example interface #1: a todo-list manager
	Example Interface #2: a database of transcripts
	Review: Learning Objectives for this Lesson
	Next steps...

