
CS 4350: Fundamentals of Software Engineering
CS 5500: Foundations of Software Engineering

Lesson 3.4: Building a REST server

Jon Bell, John Boyland, Mitch Wand

Khoury College of Computer Sciences

1

© 2021 Jonathan Bell, John Boyland and Mitch Wand. Released
under the CC BY-SA license

https://creativecommons.org/licenses/by-sa/4.0/

Learning Objectives for this Lesson

• By the end of this lesson you should be prepared
to:
• Explain the structure of a server in express.js

• Define 'middleware' and 'route' in the context of an
express.js server

• Build a server for a simple REST protocol in express.js

2

Outline of this Lesson

1. Review of REST

2. Discussion of the protocol for our example

3. Demo of the server

4. Structure of a server in express

5. Codewalk of the server, with discussion of the
development process.

3

1. REST Principles
• Single Server

• Client calls server, server responds. That's it.
• Separation of concerns: client doesn't worry about data, server

doesn't worry about UI
• Server may pass request on to other machines, but that's not visible

to the client

• Stateless
• No session state in the server
• Each client request must contain all the information the server

needs to process the request

• Uniform Interface
• associate URIs with resources

• Uniform Cacheability
• requests must classify themselves as cacheable or not.

4

Uniform Interface:
Nouns are represented as URIs

• In a RESTful system, the server is visualized as a store of
resources (nouns), each of which has some data
associated with it.

• URIs represent these resources

• Examples:
• /cities/losangeles
• /transcripts/00345/graduate (student 00345 has

several transcripts in the system; this is the graduate one)

• Anti-examples:
• /getCity/losangeles
• /getCitybyID/50654
• /Cities.php?id=50654

5

Useful heuristic: if you

were keeping this data in

a bunch of files, what

would the directory

structure look like?

But you don't have to

actually keep the data in

that way.

We prefer plural nouns for

toplevel resources, as you

see here.

Verbs are represented as http methods

• In REST, there are exactly four things you can do
with a resource:

• POST: request the server to create a resource
• there are several ways in which the value for the new

resource can be transmitted (more In a minute)

• GET: request the server to respond with a
representation of the resource

• PUT: request the server to replace the value of the
resource by the given value

• DELETE: request the server to delete the resource

6

Associating parameters with a request

There are at least 3 ways to associate parameters with a request:
• path parameters. These specify portions of the path to the resource. For

example, your REST protocol might allow a path like

/transcripts/00345/graduate

• query parameters. These are part of the URI and are typically used as
search items. For example, your REST protocol might allow a path like

/transcripts/graduate?lastname=covey&firstname=avery

• body parameters. These occur in the body of the request. They could be
formatted in JSON or www-urlencoded (like our query parameters above)
or anything else. This choice is up to the protocol designer.

7

The Protocol for our example

8

POST /transcripts
-- adds a new student to the database,
-- returns an ID for this student.
-- requires a body parameter 'name', url-encoded (eg name=avery)
-- Multiple students may have the same name.
GET /transcripts/:ID
-- returns transcript for student with given ID. Fails if no such student
DELETE /transcripts/:ID
-- deletes transcript for student with the given ID, fails if no such student
POST /transcripts/:studentID/:courseNumber
-- adds an entry in this student's transcript with given name and course.
-- Requires a body parameter 'grade', url-encoded
-- Fails if there is already an entry for this course in the student's transcript
GET /transcripts/:studentID/:courseNumber
-- returns the student's grade in the specified course.
-- Fails if student or course is missing.
GET /studentids?name=string
-- returns list of IDs for student with the given name

Remember the heuristic:

if you were keeping this

data in a bunch of files,

what would the directory

structure look like?

Reflects a different

view of the data

Development: first we built our information
store

• Just because it looks like a hierarchical structure
doesn't mean you must represent it that way.

• We wrote a TypeScript module (file) called
transcriptManager.ts that exported some types:

• and a bunch of functions:

9

export type StudentID = number
export type Student = {studentID: number, studentName: string}
export type Course = string
export type CourseGrade = {course:Course, grade:number}
export type Transcript = {student:Student, grades:CourseGrade[]}

CourseName probably

would have been a better

name than Course, sorry.

What other names could

have been improved here?

Functions exported by transcriptManager (1)

10

// initializes the database with 4 students,
// each with an empty transcript (handy for debugging)
export function initialize ()

// returns a list of all the transcripts.
// handy for debugging
export function getAll()

// creates an empty transcript for a student with this name,
// and returns a fresh ID number
export function addStudent(name:string) : StudentID

// gets transcript for given ID. Returns undefined if missing
export function getTranscript(studentID:number) : Transcript

// returns list of studentIDs matching a given name
export function getStudentIDs(studentName:string) : StudentID[]

Pretty much one function

to implement each of the

actions in the protocol.

Functions exported by transcriptManager (2)

11

// deletes student with the given ID from the database.
// throws exception if no such student.
export function deleteStudent(studentID:StudentID)

// adds a grade for the given student in the given course.
// throws error if student already has a grade in that course.
export function addGrade(studentID: StudentID, course: Course, grade: number)

// returns the grade for the given student in the given course
// throws an error if no such student or no such grade
export function getGrade(studentID:StudentID, course:Course) : number

Could I have made this

into a singleton with an

interface that looks like

this? Sure, but there

doesn't seem to be any

advantage to doing so.

Testing the transcriptManager

• I also wrote some tests for the transcript manager.

• I'm a pretty good coder, so I didn't have too many
tests initially.

• However, when things went wrong, the first thing I
did was to add some tests to transcriptManager to
make sure that it was sending the right data back to
the server.

12

Starting the server

13

wand@lenovo-2017 MINGW64 ~/Demos/Transcript-Server
$ npm install
<bunches of stuff...>

wand@lenovo-2017 MINGW64 ~/Demos/Transcript-Server
$ npm run run

> transcript-server@2.0.0 run C:\Users\wand\Demos\Transcript-Server
> tsc && node ./dist/index.js

Initial list of transcripts:
[

{ student: { studentID: 1, studentName: 'avery' }, grades: [] },
{ student: { studentID: 2, studentName: 'blake' }, grades: [] },
{ student: { studentID: 3, studentName: 'blake' }, grades: [] },
{ student: { studentID: 4, studentName: 'casey' }, grades: [] }

]
Express server now listening on localhost:4001

Interacting with the server from the
command line

14

wand@lenovo-2017 MINGW64 ~/Demos/Transcript-Server
$ curl -s -X GET localhost:4001/transcripts/3
{"student":{"studentID":3,"studentName":"blake"},"grades":[]}
wand@lenovo-2017 MINGW64 ~/Demos/Transcript-Server
$ curl -s -X POST localhost:4001/transcripts/3/cs100 -d grade=85
OK
wand@lenovo-2017 MINGW64 ~/Demos/Transcript-Server
$ curl -s -X GET localhost:4001/transcripts/3/cs100
{"studentID":3,"course":"cs100","grade":85}
wand@lenovo-2017 MINGW64 ~/Demos/Transcript-Server
$ curl -s -X GET localhost:4001/transcripts/3
{"student":{"studentID":3,"studentName":"blake"},"grades":[{"course":"cs100
","grade":85}]}

We'll use 'curl' to send
requests to the server

Student #3 was blake.
Get his transcript

POST an 85 in cs100 for
blake. The –d tells curl
to put this info in the
body of the request.

What was blake's grade
in cs100? Answer
comes back in JSON

Look at blake's whole
transcript

Interacting with the server from the
command line

15

wand@lenovo-2017 MINGW64 ~/Demos/Transcript-Server
$ curl -s -X POST localhost:4001/transcripts -d name=zeta
{"studentID":5}
wand@lenovo-2017 MINGW64 ~/Demos/Transcript-Server
$ curl -s -X GET localhost:4001/transcripts/5
{"student":{"studentID":5,"studentName":"zeta"},"grades":[]}
wand@lenovo-2017 MINGW64 ~/Demos/Transcript-Server
$ curl -s -X GET localhost:4001/studentids?name=blake
[2,3]
wand@lenovo-2017 MINGW64 ~/Demos/Transcript-Server
$

Create a new student
called zeta Server
responds with their id,
wrapped in JSON.

Look at zeta's transcript

Which students are
named 'blake'?

Structure of an express server

16

import * as express from 'express'

// create the server, call it app
const app: express.Application = express();

// the port to listen on
const inputPort = 4001

// initialize the server
function initializeServer () {

console.log(`Express server now listening on localhost:${inputPort}`)
}

// start the server listening on 4001
app.listen(inputPort,initializeServer)

// middleware
// routes

Here is the null server. It
listens on a port, but
does nothing else.

and a create SPOC for
the input port

You could do other
things here, like
initialize the database.

Create an instance of
the server

Remember? Single Point

of Control!

Tell the server to run
initializeServer() and
start listening on the
input port

middleware and routes
will go here

Install the middleware

17

// middleware

// allow requests from any port or source.
import * as cors from 'cors'
app.use(cors())

// for parsing application/json
app.use(express.json());

// for parsing application/x-www-form-urlencoded
// converts foo=bar&baz=quux to {foo: 'bar', baz: 'quux'}
app.use(express.urlencoded({ extended: true }));

express creates a pipeline of
plugins to parse and otherwise
process the requests as they come
in. These plugins are called
'middleware'.
app.use() installs a plugin in the
processing pipeline

The headers in each request
determine which parsers are
invoked .

You will see blog posts telling you
to install 'body-parser'. Don't
bother; this is now part of express
itself.

Install a route for each request in the
protocol

18

// GET /transcripts
app.get('/transcripts', (req,res) => {
console.log('Handling GET/transcripts')
let data = db.getAll()
console.log(data)
res.status(200).send(data)

})

Here we've installed a handler for
requests of the form GET /transcripts.

The routes follow the middleware.
Each route is a handler for
requests whose path matches the
path in the route.

The second argument to app.get is
always a function of two
arguments: the request and the
response. Here we don't need to
look any closer at the request

In the response, set the status to
200 ("OK") and send the data.

I put in console.log(data) so I could

check what was going on by looking

at the server console. You might or

might not want to keep this level of

logging when you hand in a server.

POST /transcripts

19

app.post('/transcripts', (req,res) => {
// use req.body.name to get the value of the post parameter
// (in the body)
const studentName : string = req.body.name;

let studentID = db.addStudent(studentName)
console.log(`Handling POST/transcripts name=${studentName}, id=${studentID}`)
res.status(200).send({studentID: studentID})

})

Here we've installed a handler for
requests of the form POST /transcripts.

Send some JSON back to the client.
The argument to send must be either
a string or some JSON; not a number.

Use req.body.<whatever> to get the
value of a post parameter in the body

Call the database to add the student
to the database.

ALWAYS need to worry

about that! Our later

routes are more careful...

What if the name

parameter is missing?

Good question!

Finger exercise: fix this

route to do something

more reasonable.

GET /transcripts/:id

20

// GET /transcripts/:id --
// returns transcript for student with given ID.
// Fails with a 404 if no such student
// req.params will look like {"id": 301}

app.get('/transcripts/:id', (req,res) => {
// req.params to get components of the path (eg: /transcripts/301)
const id = req.params.id
console.log(`Handling GET /transcripts/:id id = ${id}`)
const theTranscript = db.getTranscript(parseInt(id));
if (theTranscript === undefined) {
res.status(404).send(`No student with id = ${id}`)

} {
res.status(200).send(theTranscript)

}
})

Use req.params to extract the 301
from /transcripts/301 .

Here we are relying on the error
behavior of getTranscript.

What do you think will happen if

we do a GET /transcripts/xyzzy

? Why? Try the experiment

and see what happens. Can you

explain why the server behaves

the way it does?

GET /studentids?name=theName

21

app.get('/studentids', (req, res) => {
// use req.query to get value of the parameter
const studentName = req.query.name as string
console.log(`Handling GET /studentids?name=${studentName}`)
const ids = db.getStudentIDs(studentName)
console.log(`ids = ${ids}`)
res.status(200).send(ids)

})

If the original request is
/studentids?name=blake
then the value of req.query will be
{name: "blake"}

use req.query to get the values of
query parameters

DELETE /transcripts/:id

22

// DELETE /transcripts/:ID
// deletes transcript for student with the given ID,
// fails with 404 if no such student
app.delete('/transcripts/:id', (req,res) => {
const id = parseInt(req.params.id)
console.log(`Handling DEL /transcripts, id = ${id}`)
try {
db.deleteStudent(id);
res.sendStatus(200)

} catch (e) {
res.status(404).send(e.toString())

}
})

You should surround anything that
might fail in a try/catch.
You can transmit your own error
message or rely on e.toString() .

Default routes

23

app.get('/:request*', (req, res) => {
console.log(defaultErrorMessage('GET',req.params.request))
res.sendStatus(404)

})

app.post('/:request*', (req, res) => {
console.log(defaultErrorMessage('POST',req.params.request))
res.sendStatus(404)

})

// etc.

function defaultErrorMessage
(method: string, request: string): string
{
return `unknown ${method} request "${request}"`

}

Any request that does not match
any of the routes will reach
Express's default 404 catcher.
I found it useful to have my own
default routes, so I would be sure
what was going on.

Review: Outline of this Lesson

1. Review of REST

2. Discussion of the protocol for our example

3. Demo of the server

4. Structure of a server in express

5. Codewalk of the server, with discussion of the
development process.

24

Review: Learning Objective for this Lesson

• You should now be prepared to:
• Explain the structure of a server in express.js

• Define 'middleware' and 'route' in the context of an
express.js server

• Build a server for a simple REST protocol in express.js

25

Next steps...

26

• Come to class, prepared with questions!

• Think of some ways in which this transcript server
might be improved or extended.

	CS 4350: Fundamentals of Software Engineering CS 5500: Foundations of Software Engineering Lesson 3.4: Building a REST server
	Learning Objectives for this Lesson
	Outline of this Lesson
	1. REST Principles
	Uniform Interface: Nouns are represented as URIs
	Verbs are represented as http methods
	Associating parameters with a request
	The Protocol for our example
	Development: first we built our information store
	Functions exported by transcriptManager (1)
	Functions exported by transcriptManager (2)
	Testing the transcriptManager
	Starting the server
	Interacting with the server from the command line
	Interacting with the server from the command line
	Structure of an express server
	Install the middleware
	Install a route for each request in the protocol
	POST /transcripts
	GET /transcripts/:id
	GET /studentids?name=theName
	DELETE /transcripts/:id
	Default routes
	Review: Outline of this Lesson
	Review: Learning Objective for this Lesson
	Next steps...

