
CS 4350: Fundamentals of Software Engineering
CS 5500: Foundations of Software Engineering

Lesson 4.1: The Javascript Event Handler Model

Jon Bell, John Boyland, Mitch Wand

Khoury College of Computer Sciences

1

© 2021 Jonathan Bell, John Boyland and Mitch Wand. Released
under the CC BY-SA license

https://creativecommons.org/licenses/by-sa/4.0/

Learning Objectives for this Lesson

• By the end of this lesson you should be prepared
to:
• Explain what is meant by "run-to-completion semantics"

• Describe 3 ways in which event handlers may become
ready for execution

• Explain what a "promise" is

• Given a program consisting of straight-line promises like
the ones in the examples, predict the order in which the
different pieces can execute.

2

The Pool of Waiting Event Handlers

A JavaScript execution state consists of
a bunch of event handlers

3

The running event
handler

One of the event handlers
is running; the others are

waiting

What's an event handler?

• An event handler is a piece of code that is waiting
for some event to happen.

• In Javascript, all the event handlers work in the
same address space

• That means that handlers can communicate
through shared state

• It also means that switching from one handler to
another can be fast.

4

People use different names for

these things. Some call them

"callbacks"; others call them

"messages"; others might call

them "green threads". "Event

handlers" seems like the best

name for now.

The Javascript runtime maintains a pool of
event handlers.

• At any time, one event handler is running and the
others are waiting.

• Here's an event handler. The color of the head tells
us whether it's ready for execution: green if it's
ready, red if not.

• This one is not ready: it's still waiting for its event
to happen.

5

What's an event?

• There are roughly 3 kinds of events that an event
handler may be waiting for
• some timer has reached a specific value.

• some input/output event occurs

• some other event handler or event handlers complete.

6

the most common case

our focus in this lesson

JavaScript has "run-to-completion"
semantics
• When an event handler runs, it always runs to

completion
• It is never interrupted.
• This means that a handler doesn't have to worry about

some other handler overwriting its memory.
• But this also means that some high-priority task (like

responding to a keystroke) can't interrupt a lower-
priority task

• So: you want to organize your computation into many
handlers, each of which runs to completion quickly.

• This is sometimes called "cooperative multiprocessing".
• The JavaScript programming model is designed to

facilitate this.

7

When the running event handler completes, the
scheduler chooses one of the other ready event handlers
to execute

8

The Pool of Waiting event handlers
The running event

handler

How are new event handlers created?

• Simplest way– via JS setTimeout

• Output:

9

console.log("main event handler running")
setTimeout(() => {

console.log("event handler 2 running")
console.log("event handler 2 finishing")

})
console.log("main event handler finishing")

main event handler running
main event handler finishing
event handler 2 running
event handler 2 finishing

setTimeout(callback,t) creates

a new handler, which runs the

callback after a delay of at least

t msecs. Default value of t is 0.

4.1/example1.ts

Handlers as objects

• A promise is an object representing the eventual
completion or failure of a handler.

• A promise is always in one of three states:
• pending

• fulfilled (or resolved) meaning that the handler completed
successfully

• rejected, meaning that the handler failed

• Once a promise is fulfilled or rejected, it stays that way.

• A promise may have a then property, which is a handler
to be invoked when the promise is fulfilled

• A promise may also have a catch property, which is a
handler to be invoked when the promise is rejected

10

You will most likely not be building promises
from scratch

• Asynchronous operations (like input/output
operations) are typically exported as functions that
return promises.

• So we'll concentrate on the use of promises, by
utilizing the .then and .catch properties.

• For our examples, we'll create promises using a
function with the following interface:

11

function makePromise1(promiseName: string, shouldSucceed: boolean, value?: number)
: Promise<number>
// returns a promise that fulfills with the given value if shouldSucceed is true
// and that is rejected otherwise. 'value' is an optional argument

makePromise1 in action

12

main handler starting
creating new promise promise100
main handler finished
promise promise100 now running; flag = true
promise promise100 now fulfilling with 10

import makePromise1 from './promiseMaker'

console.log("main handler starting")

// create a new promise,
// labeled "promise100",
// and throw it in the pool
makePromise1("promise100",true,10)

// finish the main handler
console.log('main handler finished')
// and go on to run any handlers left in the pool

4.1/example1a.ts

Extending promises with callbacks

• const p2 = p1.then(callback) creates a new promise
that represents the result of promise p1 followed
by the callback (if p1 fulfills)

• This is a new promise.

• p2 is ready when p1 is completed (either fulfilled or
rejected)

• When p2 is run, it refers to p1. If p1 was fulfilled,
its value is passed to the callback, and p2
completes normally. p1 is not run again.

• If p1 was rejected, then p2 exits with an unhandled
error.

13

Linking event handlers

14

import makePromise1 from './promiseMaker'

console.log("main handler starting")

const p1 = makePromise1("p1", true, 10)
const p2 = makePromise1("p2", true, 20)
const p3 = p1.then(n => {

console.log(`p1 passed ${n} to its callback`)
})
const p4 = p3.then(() => {

console.log(`p3 passed no value to its callback`)
})

console.log("main handler finishing\n")

main handler starting
creating new promise p1
creating new promise p2
main handler finishing

promise p1 now running; flag =
true
promise p1 now fulfilling with 10
p1 passed 10 to its callback
p3 passed no value to its callback
promise p2 now running; flag =
true
promise p2 now fulfilling with 20

4.1/example2.ts
p3 is a new promise that includes both p1
and the new callback.
p4 is a new promise that includes both 3
and the new callback

.then callbacks ignore rejected promises

15

import makePromise1 from './promiseMaker'

console.log("main handler starting")

// p1 will be rejected
const p1 = makePromise1("p1", false, 10)
const p2 = makePromise1("p2", true, 20)

// p3 completes without running the callback
const p3 = p1.then(n => {

console.log(`p1 passed ${n} to its callback`)
})
// and p4 similarly completes without running its
// callback, so it completes with an unhandled exception
const p4 = p3.then(() => {

console.log(`p3 passed no value to its callback`)
})

console.log("main handler finishing\n")

4.1/example3.ts

Use a .catch callback to catch rejected
promises

16

import makePromise1 from './promiseMaker'

console.log("main handler starting")

// p1 will be rejected
const p1 = makePromise1("p1", false, 10)
const p2 = makePromise1("p2", true, 20)

// p3 throws an error
const p3 = p1.then(n => {

console.log(`p1 passed ${n} to its callback`)
})
// but p4 catches it
const p4 = p3.catch((e) => {

console.log(`p3 was rejected;
the rejection message was "${e}"`)

})

console.log("main handler finishing\n")

main handler starting
creating new promise p1
creating new promise p2
main handler finishing

promise p1 now running; flag = false
promise p1 now rejecting
p3 was rejected; the rejection message
was "promise p1 was rejected"
promise p2 now running; flag = true
promise p2 now fulfilling with 20

4.1/example4.ts

You can even link more than one callback to
a promise

17

import makePromise1 from './promiseMaker'

console.log("main handler starting")

const p1 = makePromise1("p1", true, 10)
const p2 = makePromise1("p2", true, 20)

const p3 = p1.then(n => {
console.log(`callback A says: p1 passed ${n} to me`)

})

const p4 = p1.then(n => {
console.log(`callback B says: p1 passed ${n} to me, too`)

})

console.log("main handler finishing\n")

main handler starting
creating new promise p1
creating new promise p2
main handler finishing

promise p1 now running; flag = true
promise p1 now fulfilling with 10
callback A says: p1 passed 10 to me
callback B says: p1 passed 10 to me,
too
promise p2 now running; flag = true
promise p2 now fulfilling with 20

When p1 finishes, the

callbacks at both p3 and p4

become ready for execution.

Their order of execution is

unspecified.

4.1/example5.ts

Linking callbacks in series

18

import makePromise1 from './promiseMaker'

console.log("main handler starting")

const p1 = makePromise1("p1", true, 10)
const p2 = makePromise1("p2", true, 20)

const p3 = p1.then((n:number) => {
console.log(`callback A says: p1 passed ${n} to me`);
return true

})

const p4 = p3.then((b:boolean) => {
console.log(`callback B says: callback A passed ${b} to me`)

})

console.log("main handler finishing\n")

main handler starting
creating new promise p1
creating new promise p2
main handler finishing

promise p1 now running; flag = true
promise p1 now fulfilling with 10
callback A says: p1 passed 10 to me
callback B says: callback A passed
true to me
promise p2 now running; flag = true
promise p2 now fulfilling with 20

4.1/example6.ts

Synchronizing event handlers

19

main handler starting
creating new promise p1
creating new promise p2
main handler finishing

promise p1 now running; flag =
true
promise p1 now fulfilling with 10
callback A says: p1 passed 10 to
me
callback B says: p1 passed 10 to
me, too
p3 returned 11
p4 returned 110
promise p2 now running; flag =
true
promise p2 now fulfilling with 20

values is bound to the list containing the

value passed by p4 and the value passed by

p3, in that order, regardless of the order in

which p3 and p4 executed.

import makePromise1 from './promiseMaker'

console.log("main handler starting")

const p1 = makePromise1("p1", true, 10)
const p2 = makePromise1("p2", true, 20)

const p3 = p1.then(n => {
console.log(`callback A says: p1 passed ${n} to me`);
return n+1

})

const p4 = p1.then(n => {
console.log(`callback B says: p1 passed ${n} to me, too`);
return n+100

})

const p5 = Promise.all([p4,p3])
.then(values => {

console.log(`p3 returned ${values[1]}`);
console.log(`p4 returned ${values[0]}`)

})

console.log("main handler finishing\n")

Review: Learning Objectives for this Lesson

• You should now be able to:
• Explain what is meant by "run-to-completion semantics"

• Describe 3 ways in which event handlers may become
ready for execution

• Explain what a "promise" is

• Given a program consisting of straight-line promises like
the ones in the examples, predict the order in which the
different pieces can execute.

20

Next steps...

21

• Be prepared to explain each line in the output
examples

• Create some examples like the ones here and try to
predict what they will do.

• Go on to the next lesson

	CS 4350: Fundamentals of Software Engineering CS 5500: Foundations of Software Engineering Lesson 4.1: The Javascript Event Handler Model
	Learning Objectives for this Lesson
	A JavaScript execution state consists of a bunch of event handlers
	What's an event handler?
	The Javascript runtime maintains a pool of event handlers.
	What's an event?
	JavaScript has "run-to-completion" semantics
	When the running event handler completes, the scheduler chooses one of the other ready event handlers to execute
	How are new event handlers created?
	Handlers as objects
	You will most likely not be building promises from scratch
	makePromise1 in action
	Extending promises with callbacks
	Linking event handlers
	.then callbacks ignore rejected promises
	Use a .catch callback to catch rejected promises
	You can even link more than one callback to a promise
	Linking callbacks in series
	Synchronizing event handlers
	Review: Learning Objectives for this Lesson
	Next steps...

