
CS 4350: Fundamentals of Software Engineering
CS 5500: Foundations of Software Engineering

Lesson 4.2: Writing functions with async/await

Jon Bell, John Boyland, Mitch Wand

Khoury College of Computer Sciences

1

© 2021 Jonathan Bell, John Boyland and Mitch Wand. Released
under the CC BY-SA license

https://creativecommons.org/licenses/by-sa/4.0/

Learning Objectives for this Lesson

• By the end of this lesson you should be prepared
to:
• Explain how a sequence of then/catch handlers handle

successful promises and errors

• Explain how async/await works with try/catch to make
asynchronous programming easier

2

Outline of this Lesson

• What happens when a promise is rejected?

• Creating sequences of actions by writing chains of
.then and .catch blocks

• Using async and await to avoid writing these
chains.

3

The Pool of Waiting handlers

Review: The Javascript runtime
maintains a pool of handlers.

4

The running handler

When the running event handler completes, the
scheduler chooses one of the other ready event handlers
to execute

5

The Pool of Waiting event handlers
The running event

handler

How can a handler become ready?

• There are roughly 3 ways in which a handler can
become ready:
• it can become ready at a specific time.

• it can become ready when some input/output event
occurs

• it can become ready when some other handler or
handlers complete.

6

our focus in this lesson

You will most likely not be building promises
from scratch

• Asynchronous operations (like input/output
operations) are typically exported as promises (or
as functions that return promises)

• So we'll concentrate on using promises, by using
.then and .catch properties.

• For our examples, we'll create promises using a
function with the following interface:

7

function makePromise1(promiseName: string, shouldSucceed: boolean, value?: number)
: Promise<number>
// returns a promise that fulfills with the given value if shouldSucceed is true
// and that is rejected with the string "promiseName was rejected"
// otherwise. 'value' is an optional argument when shouldSucceed is false

What happens if a promise fails?

8

examples-4.2/example1.ts

import makePromise1 from './promiseMaker'

console.log("main handler starting")

makePromise1("promise1",true, 10)
.then(n => console.log(`promise1 passed ${n}
to its successor`))
makePromise1("promise2",false)
.then(n => console.log(`promise2 passed ${n}
to its successor`))
console.log('main handler finished')

main handler starting
creating new promise promise1
creating new promise promise2
main handler finished
promise promise1 now running; flag =
true
promise promise1 now fulfilling with
10
promise1 passed 10 to its successor
promise promise2 now running; flag =
false
promise promise2 now rejecting
(node:19860)
UnhandledPromiseRejectionWarning:
promise promise2 was rejected
(node:19860)
UnhandledPromiseRejectionWarning:
Unhandled promise rejection.

Sorry for the bad line

breaks. Gotta fit it on

the slide ☺

What happened here?

• .then handlers only handle promises that succeed

• To handle failure, you need a .catch() handler

9

...with a .catch() handler

10

examples-4.2/example2.ts

import makePromise1 from './promiseMaker'

console.log("main handler starting")

makePromise1("promise1",true, 10)
.then(n => console.log(`promise1 passed ${n}
to its successor`))
makePromise1("promise2",false)
.catch(n => console.log(`promise2 passed ${n}
to its successor`))

console.log('main handler finished')

main handler starting
creating new promise promise1
creating new promise promise2
main thread finished
promise promise1 now running; flag =
true
promise promise1 now fulfilling with 10
promise1 passed 10 to its successor
promise promise2 now running; flag =
false
promise promise2 now rejecting
promise2 passed promise promise2 was
rejected to its successor

'n' is bound to the

rejection message

produced by the promise,

in this case, "promise2

was rejected."

.then() and .catch() blocks can themselves
succeed or fail

• throwing an error counts as failure

• anything else counts as succeeding

• This determines which then/catch blocks get
executed.

11

import makePromise1 from './promiseMaker'

console.log("main handler starting")

function driver(promiseName: string, flag: boolean) {
console.log(`starting driver(${flag})`)
makePromise1(promiseName,flag,10)

.then(n => {console.log(`promise ${promiseName} fulfil
led and passed ${n} to its successor`);

return n+1
})

.then(m => console.log(`the second then block received
${m}`))

.catch(n => console.log(`promise ${promiseName} reject
ed and passed "${n}" to its successor`))
}

driver("promise1",true)
driver("promise2",false)

console.log('main handler finished')

.then and .catch blocks can pass values to
their successors using return

12

examples-4.2/example3.ts

main handler starting
starting driver(true)
creating new promise promise1
starting driver(false)
creating new promise promise2
main handler finished
promise promise1 now running;
flag = true
promise promise1 now
fulfilling with 10
promise promise1 fulfilled and
passed 10 to its successor
the second then block received
11
promise promise2 now running;
flag = false
promise promise2 now rejecting
promise promise2 rejected and
passed "promise promise2 was
rejected" to its successor

This works inside either a

then() or a catch() block

.then and .catch blocks can also throw
errors to their successors

13

examples-4.2/example4.ts

import makePromise1 from './promiseMaker'

console.log("main handler starting")

function driver(promiseName: string, flag: boolean) {
console.log(`starting driver(${promiseName})`)
makePromise1(promiseName, flag, 10)

.then(n => {
console.log(`promise ${promiseName} fulfilled and pa

ssed ${n} to its successor`);
console.log(`the then block of ${promiseName} will n

ow throw an error`);
throw new Error("my error 1")

})
.then(m => console.log(`the second then block received $

{m}`))
.catch(n => console.log(`promise ${promiseName} rejected

and passed "${n}" to its successor`))
}

driver("promise1", true)
driver("promise2", false)
console.log('main handler finished')

main handler starting
starting driver(promise1)
creating new promise promise1
starting driver(promise2)
creating new promise promise2
main handler finished
promise promise1 now running; flag =
true
promise promise1 now fulfilling with 10
promise promise1 fulfilled and passed 10
to its successor
the then block of promise1 will now
throw an error
promise promise1 rejected and passed
"Error: my error 1" to its successor
promise promise2 now running; flag =
false
promise promise2 now rejecting
promise promise2 rejected and passed
"promise promise2 was rejected" to its
successor

Chained .then and .catch blocks

• This leads to code like this:

• and what if there are conditionals to worry about?

14

somePromise
.then()
.then()
.then()
.catch()
.then() // if there's more to do after the catch
.then()
.catch()

Yuck!

Avoiding this with async/await

• An async function is declared with the async
keyword.

• Within an async function, you can call another
promise function, and await its result.

• You can also use try/catch within the body of the
async function; the catch block in the try/catch
becomes a catch handler on the async function you
just called.

• This sounds more complicated than it is. Let's go
back a few steps.

15

Here's the pattern

16

function f() {
doThisNow()
promiseReturningFunction()

.then(value =>onSuccess(value))

.catch(errmsg => onFailure(errmsg))
}

we do this right now,
in the caller's handler

we'll do this stuff in
the new handler,
sometime after the
caller's handler is
finished

write this:

instead of
this

we do this right now,
in the caller's handler

we'll do this stuff in
the new handler,
sometime after the
caller's handler is
finished

examples-4.2/example5.ts

async function f {
try {

doThisNow()
const value = await promiseReturningFunction()
onSuccess(value)

} catch (errmsg) {
onFailure(errmsg)

}
}

Here's the pattern (2)

17

function f() {
doThisNow()
promiseReturningFunction()

.then(value =>onSuccess(value))

.catch(errmsg => onFailure(errmsg))
}

we do this right now,
in the caller's handler

we'll do this stuff in
the new handler,
sometime after the
caller's handler is
finished

we do this right now,
in the caller's handler

we'll do this stuff in
the new handler,
sometime after the
caller's handler is
finished

examples-4.2/example5.ts

async function f {
try {

doThisNow()
const value = await promiseReturningFunction()
onSuccess(value)

} catch (errmsg) {
onFailure(errmsg)

}
}

the async
keyword tells
the system to
translate

this

into this

Here's an example (original)

18

function driver(promiseName: string, flag: boolean) {
console.log(`starting driver(${flag})`)
makePromise1(promiseName,flag,10)

.then(n => {console.log(`promise ${promiseName} fulfilled and passed ${n}
to its successor`);

return n+1
})

.then(m => console.log(`the second then block received ${m}`))

.catch(n => console.log(`promise ${promiseName} rejected and passed "${n}
" to its successor`))
}

examples-4.2/example6.ts

Example rewritten with async/await

19

examples-4.2/example6.ts

async function driver2(promiseName: string, flag: boolean) {
try {

console.log(`starting driver2(${flag})`)
const n = await makePromise1(promiseName, flag, 10)
console.log(`promise ${promiseName} fulfilled and passed ${n} to its suc

cessor`);
const m = n + 1
console.log(`the second then block received ${m}`)

} catch (n) { console.log(`promise ${promiseName} rejected and passed "${n}"
to its successor`) }
}

Let's run them both and compare (1)

20

import makePromise1 from './promiseMaker'

console.log("main handler starting")

function driver(promiseName: string, flag: boolean) {...}

async function driver2(promiseName: string, flag: boolean)
{...}

console.log("first group")
driver("promise1",true)
driver("promise2",false)
driver2("promise1a",true)
driver2("promise2a",false)

console.log('main handler finished')

main handler starting
first group
starting driver(true)
creating new promise promise1
starting driver(false)
creating new promise promise2
starting driver2(true)
creating new promise promise1a
starting driver2(false)
creating new promise promise2a
main handler finished
promise promise1 now running; flag = true
promise promise1 now fulfilling with 10
promise promise1 fulfilled and passed 10 to its
successor
the second then block received 11
promise promise2 now running; flag = false
promise promise2 now rejecting
promise promise2 rejected and passed "promise
promise2 was rejected" to its successor
(continued on next slide)

examples-4.2/example6.ts

Let's run them both and compare (2)

21

import makePromise1 from './promiseMaker'

console.log("main handler starting")

function driver(promiseName: string, flag: boolean) {...}

async function driver2(promiseName: string, flag: boolean)
{...}

console.log("first group")
driver("promise1",true)
driver("promise2",false)
driver2("promise1a",true)
driver2("promise2a",false)

console.log('main handler finished')

(continued from preceding slide)
promise promise1a now running; flag = true
promise promise1a now fulfilling with 10
promise promise1a fulfilled and passed 10 to
its successor
the second then block received 11
promise promise2a now running; flag = false
promise promise2a now rejecting
promise promise2a rejected and passed "promise
promise2a was rejected" to its successor

Same

behavior!

examples-4.2/example6.ts

The outputs, side by side

22

main handler starting
first group
starting driver(true)
creating new promise promise1
starting driver(false)
creating new promise promise2
starting driver2(true)
creating new promise promise1a
starting driver2(false)
creating new promise promise2a
main handler finished
promise promise1 now running; flag = true
promise promise1 now fulfilling with 10
promise promise1 fulfilled and passed 10 to its
successor
the second then block received 11
promise promise2 now running; flag = false
promise promise2 now rejecting
promise promise2 rejected and passed "promise
promise2 was rejected" to its successor
(continued on next slide)

(continued from preceding slide)
promise promise1a now running; flag = true
promise promise1a now fulfilling with 10
promise promise1a fulfilled and passed 10 to
its successor
the second then block received 11
promise promise2a now running; flag = false
promise promise2a now rejecting
promise promise2a rejected and passed "promise
promise2a was rejected" to its successor

Indeed, same

behavior!

Things to know about async/await

• An async function always returns a promise.

• Because a promise is created, it is automatically
thrown in the pool of handlers to be run when
ready

• The async keyword tells the compiler to do the
translation

• Therefore, await makes no sense except in the body
of an async function.

• The try/catch is optional.

23

That was a long story to reach a simple
conclusion

• A useful but complex pattern of behaviors is
encapsulated in a single language construct.

• In the olden days, this might have been a "design
pattern"

• Illustrates the power of programming-language
technology

24

Review: Learning Objectives for this Lesson

• You should now be able to:
• Explain how a sequence of then/catch handlers handle

successful promises and errors

• Explain how async/await works with try/catch to make
asynchronous programming easier

25

Next Steps

• Be prepared to explain each line in the output
examples

• Create some examples like the ones here and try to
predict what they will do.

• Think of some good questions to bring to class!

26

	CS 4350: Fundamentals of Software Engineering CS 5500: Foundations of Software Engineering Lesson 4.2: Writing functions with async/await
	Learning Objectives for this Lesson
	Outline of this Lesson
	Review: The Javascript runtime maintains a pool of handlers.
	When the running event handler completes, the scheduler chooses one of the other ready event handlers to execute
	How can a handler become ready?
	You will most likely not be building promises from scratch
	What happens if a promise fails?
	What happened here?
	...with a .catch() handler
	.then() and .catch() blocks can themselves succeed or fail
	.then and .catch blocks can pass values to their successors using return
	.then and .catch blocks can also throw errors to their successors
	Chained .then and .catch blocks
	Avoiding this with async/await
	Here's the pattern
	Here's the pattern (2)
	Here's an example (original)
	Example rewritten with async/await
	Let's run them both and compare (1)
	Let's run them both and compare (2)
	The outputs, side by side
	Things to know about async/await
	That was a long story to reach a simple conclusion
	Review: Learning Objectives for this Lesson
	Next Steps

