
CS 4350: Fundamentals of Software Engineering
CS 5500: Foundations of Software Engineering

Lesson 4.3 Building a web client with async

Jon Bell, John Boyland, Mitch Wand

Khoury College of Computer Sciences

1

© 2021 Jonathan Bell, John Boyland and Mitch Wand. Released
under the CC BY-SA license

https://creativecommons.org/licenses/by-sa/4.0/

Learning Objectives for this Lesson

• By the end of this lesson you should be able to:
• Explain how a web client can be built in a layered

fashion

• Write scripts for the client that send out multiple http
requests asynchronously.

2

Outline of this Lesson

• Review: promises and asynchronous functions

• Design of a scriptable web client using async

3

Review: Example with async/await

4

examples-4.2/example6.ts

async function driver2(promiseName: string, flag: boolean) {
try {

console.log(`starting driver2(${flag})`)
const n = await makePromise1(promiseName, flag, 10)
console.log(`promise ${promiseName} fulfilled and passed ${n} to its suc

cessor`);
const m = n + 1
console.log(`the second then block received ${m}`)

} catch (n) { console.log(`promise ${promiseName} rejected and passed "${n}"
to its successor`) }
}

Example without async/await

5

function driver(promiseName: string, flag: boolean) {
console.log(`starting driver(${flag})`)
makePromise1(promiseName,flag,10)

.then(n => {console.log(`promise ${promiseName} fulfilled and passed ${n}
to its successor`);

return n+1
})

.then(m => console.log(`the second then block received ${m}`))

.catch(n => console.log(`promise ${promiseName} rejected and passed "${n}
" to its successor`))
}

examples-4.2/example6.ts

Things to know about async/await

• An async function always returns a promise.

• Because a promise is created, it is automatically
thrown in the pool of handlers to be run when
ready

• The async keyword tells the compiler to do the
translation

• Therefore, await makes no sense except in the
body of an async function.

• The try/catch is optional, but typical.

6

That was a long story to reach a simple
conclusion

• A useful but complex pattern of behaviors is
encapsulated in a single language construct.

• In the olden days, this might have been a "design
pattern"

• Illustrates the power of programming-language
technology

7

Today's goal: A scriptable web client

• Usually you will interact with the web using a
browser (e.g. using REACT)

• But you don't need that complexity immediately

• Today, we'll build a client that you can use to write
scripts that interact with the transcript server.

8

Goal: be able to write things like

9

async function script1() {
try {
console.log('starting script1()');
const p1 = await ds.getTranscript(2);
console.log('script1 says: getTranscript(2) says:', p1);
const blakeIDs = await ds.getStudentIDs('blake');
console.log('script1 says: students named blake:', blakeIDs);
try {

await (ds.addGrade(blakeIDs[0], 'cs101', 85));
} catch {console.log("script1 says: blake's grade already there, continuing");}
console.log('script1 says', await ds.getGrade(blakeIDs[0], 'cs101'));
console.log('script1 succeeded');

} catch { console.log('script1 failed'); }
}

Here we've written a

whole script of

interactions with the

server. We use 'await' to

make sure that

everything is done in the

exact order we want.

We've made this script especially

verbose so you can see the details of

what's going on here. Probably good

for debugging, maybe not so much

when deployed.

And things like this

10

async function getTranscriptsByName(studentName: string) {
try {
console.log(`starting getTranscriptsByName(${studentName})`);
const ids = await ds.getStudentIDs(studentName);
// put out all the requests in parallel, not sequentially
// 'requests' becomes bound to an array of promises
const requests : Promise<Transcript>[] = ids.map(id => ds.getTranscript(id));
const transcripts = await Promise.all(requests);
console.log(`getTranscriptsByName says: ${studentName}'s transcripts:`,

transcripts);
console.log('getTranscriptsByName succeeded');

} catch {
console.log('getTranscriptsByName failed');

}
}

getTranscriptsByName('blake')

Our client uses a layered architecture

11

index.ts : contains scripts to be executed.
Calls: getTranscript, getStudentIDs, etc., corresponding to the REST
endpoints

dataService.ts: provides REST endpoints
exports: getTranscript, getStudentIDs, etc.

remoteService.ts : provides http methods
exports: remoteGet, remotePost, etc.

axios: an npm package that actually does the http work
provides: axios.get, axios.post, etc

This is the only module that

refers to axios. So if we

switch to another http

package, this is the only file

that needs changing

remoteService.ts

12

import axios, { AxiosResponse } from 'axios';

axios.defaults.baseURL = 'http://localhost:4001'; // where to send the requests

export async function remoteGet<T>(path:string) : Promise<T> {
try {
const response : AxiosResponse<T> = await axios.get(path);
return (response.data);

} catch (e) { throw new Error(e); }
}

export async function remoteDelete<T>(path:string) : Promise<T> {
// similar

}

export async function remotePost<T>(path:string, data?:T) : Promise<T> {
try {
const response : AxiosResponse<T> = await axios.post(path, data);
return (response.data);

} catch (e) { throw new Error(e); }
}

3 functions, one per http

Method.

dataService.ts

13

import { StudentID, Course, Transcript } from './types';
import { remoteGet, remoteDelete, remotePost } from './remoteService';

// POST /transcripts
export async function addStudent(studentName: string): Promise<{ name: string }> {

return remotePost('/transcripts', { name: studentName });
}

// GET /studentids?name=string -- returns list of IDs for student with the given name
export async function getStudentIDs(studentName:string) : Promise<StudentID[]> {

return remoteGet(`studentids?name=${studentName}`);
}

/* POST /transcripts/:studentID/:course -- /transcripts
Requires a post parameter 'grade'.
Fails if there is already an entry for this course in the student's transcript
*/
export async function addGrade(studentID: StudentID, course: Course, grade: number)

: Promise<{ grade: number }> {
return remotePost(`/transcripts/${studentID}/${course}`, { grade: grade });

}

// ...

One function per REST

endpoint. (Similar to

transcriptManager.ts)

Running the system

• Unpack and install transcript-server and transcript-
client

• In one shell, open the directory containing the
server and run 'npm start'. This will start the server
and display the server console.

• In another shell, open the directory containing the
client. To run the client, say 'npm start'.

• You can always change the scripts in the client's
index.ts

14

Watching the system run

• Server startup messages:

• You are now watching the server log.

• Our server prints lots of log messages so you can
see what's happening on the server side.

15

> tsc && node ./dist/index.js

Initial list of transcripts:
[
{ student: { studentID: 1, studentName: 'avery' }, grades: [] },
{ student: { studentID: 2, studentName: 'blake' }, grades: [] },
{ student: { studentID: 3, studentName: 'blake' }, grades: [] },
{ student: { studentID: 4, studentName: 'casey' }, grades: [] }

]
Express server now listening on localhost:4001

index.ts (the actual client)

16

import * as ds from './dataService';
import { Transcript } from './types';

console.log('starting index.ts');
async function script1() {...}
async function getTranscriptsByName(studentName: string) {...}

// this creates a new promise that will executed when the scheduler
// gets around to it
script1();
// getTranscriptsByName() creates a promise that will be fulfilled later.
// But the console.log runs right away. So it prints "Promise<pending>"
console.log(getTranscriptsByName('blake'));

// also done right away
console.log('index.ts done');

Client's output

17

starting index.ts
starting script1()
starting getTranscriptsByName(blake)
Promise { <pending> }
index.ts done
script1 says: getTranscript(2) says: { student: { studentID: 2,
studentName: 'blake' }, grades: [] }
getTranscriptsByName says: blake's transcripts: [
{ student: { studentID: 2, studentName: 'blake' }, grades: []

},
{ student: { studentID: 3, studentName: 'blake' }, grades: []

}
]
getTranscriptsByName succeeded
script1 says: students named blake: [2, 3]
script1 says { studentID: 2, course: 'cs101', grade: 85 }
script1 succeeded

Notice that script1 and

getTranscriptbyName are

running in separate handlers,

so the promises they create

are interleaved.

The promises generated by

getTranscriptsByName are

also asynchronous and may

be interleaved, but that's a

little harder to illustrate.

Review: Learning Objectives for this Lesson

• You should now be able to:
• Explain how a web client can be built in a layered

fashion

• Write scripts for the client that send out multiple http
requests asynchronously.

18

Next Steps

• Be prepared to explain each line in the output
examples

• Create some new scripts like the ones here and try
to predict what they will do.

• Add some new REST endpoints to the server and
the client.

• Think of some good questions to bring to class!

19

	CS 4350: Fundamentals of Software Engineering CS 5500: Foundations of Software Engineering Lesson 4.3 Building a web client with async
	Learning Objectives for this Lesson
	Outline of this Lesson
	Review: Example with async/await
	Example without async/await
	Things to know about async/await
	That was a long story to reach a simple conclusion
	Today's goal: A scriptable web client
	Goal: be able to write things like
	And things like this
	Our client uses a layered architecture
	remoteService.ts
	dataService.ts
	Running the system
	Watching the system run
	index.ts (the actual client)
	Client's output
	Review: Learning Objectives for this Lesson
	Next Steps

