
CS 4350: Fundamentals of Software Engineering
CS 5500: Foundations of Software Engineering

Lesson 5.1 Testing Introduction

Jon Bell, John Boyland, Mitch Wand
Khoury College of Computer Sciences

1

© 2021 Jonathan Bell, John Boyland and Mitch Wand. Released
under the CC BY-SA license

https://creativecommons.org/licenses/by-sa/4.0/

Learning Objectives for this Lesson
• By the end of this lesson, you should be able to:
• Describe the elements of a test and how they are used;
• State Dijkstra’s law and its relevance;
• Classify tests by purpose, scope and size;
• Explain why test automation is important.

2

We will revisit these
at the end of the
lesson.

Working Definition
• Software Testing is the process of checking if

software meets certain concrete requirements
• “certain” – a finite set
• “concrete” – particular, not symbolic

• Testing is carried out by execution of the software.
• Next: definitions “SUT” and “Test”

3

SUT = System Under Test
• The “System Under Test” consists of its
• Inputs
• State
• Outputs
• State Change
• (Other) Behavior

4

SystemInputs Outputs

Behavior

State Change

Test
• A Test for a SUT consists of
• Given [a certain state in the SUT],
• When [certain inputs are presented],
• Then [certain outputs, state change and behavior are

expected].

• Example:

5

Given
When
Then

it('should set the coveyRoomID property', () => {
const roomsStore = CoveyRoomsStore.getInstance();
const roomName = nanoid();
const roomController = roomsStore.getControllerForRoom(roomName);
expect(roomController.coveyRoomID)

.toBe(roomName);
});

Running a Test
• Construct the situation:
• Set up SUT to get the state ready
• [Optional: Prepare collaborators]

• Apply the operation inputs.
• Check the outputs, verify the state change, handle

the behavior
• Handle exceptions,
• Time-Out to handle nontermination,
• Post-check with collaborators.

6

Dijkstra’s Law
“Program testing can be used to
show the presence of bugs, but
never to show their absence!”
– Edsger Dijkstra

• The state space of a SUT is (usually)
infinite, but testing can only execute a
finite number of tests.
• Even if the state space is finite, it may

still be too large to make exhaustive
testing feasible.

7

And this ignores the fallibility of tests.
What if the tests are in error?

Classifying Tests
• We can classify tests according to several cross-

cutting dimensions:
• Scope: What sort of thing is the SUT?
• Purpose: Why are we testing?
• Size: What resources does testing need?
• How: How is testing performed?

8

Test Scope
• Unit tests: SUT = a single method/class/object
• Integration tests: SUT = combinations of units, a

subsystem
• System tests: SUT = whole system being developed

9

Test Purpose
• Acceptance Test
• Customer-level requirement testing
• Validation: Are we building the right system ?

• Functional Test
• “Black-Box” testing
• Specification Testing

• Structural Test
• “White-Box” testing
• Exercising the code

• Regression Test
• Prevent bugs from (re-)entering during maintenance.

10

These purposes affect
how we evaluate a
test suite.

Test Size
• Small: run on a single process, no blocking I/O

• Fast to run; can be run automatically and frequently

• Medium: run on a single machine, no network I/O (only
localhost); “hermetic”
• May be slower; delayed to overnight runs

• Large/Enormous tests: run on a network.
• May have serious $$$ cost in network services or personnel.

See SoftEng @ Google Chapter 11
• https://learning.oreilly.com/library/view/software-engineering-

at/9781492082781/ch11.html#testing_overview

11

Manner of Testing
• Automated tests can be run without supervision
• Suitable for frequent automated runs

• Manual tests require a human to run and evaluate
• A human may be needed to check UI elements
• Tests may be ill-defined and nondeterministic

• E.g. trying to “break” software

• Customer-facing tests require an intermediary to
evaluate as well as the customer to use the
software.

12

From SoftEng @ Google Chapter 11
• https://learning.oreilly.com/library/view/software-engineering-

at/9781492082781/ch11.html#testing_overview

Test Distribution
(Size/Scope/Manner)

13

Pyramid
Test Pattern

Review
• Now that you've studied this lesson, you should be

able to:
• Describe the elements of a test and how they are used;
• State Dijkstra’s law and its relevance;
• Classify tests by purpose, scope and size;
• Explain why test automation is important.

14

Looking Forward
• In our next lesson, we’ll discuss “Test-Driven

Development”

15

