CS 4350: Fundamentals of Software Engineering
CS 5500: Foundations of Software Engineering

Lesson 5.1 Testing Introduction

Jon Bell, John Boyland, Mitch Wand
Khoury College of Computer Sciences

© 2021 Jonathan Bell, John Boyland and Mitch Wand. Released
under the CC BY-SA license

https://creativecommons.org/licenses/by-sa/4.0/

Learning Objectives for this Lesson

* By the end of this lesson, you should be able to:
* Describe the elements of a test and how they are used;
 State Dijkstra’s law and its relevance;
 Classify tests by purpose, scope and size;

e Explain why test automation is important.

We will revisit these
at the end of the
lesson.

Working Definition

e Software Testing is the process of checking if
software meets certain concrete requirements

e “certain” —a finite set
e “concrete” — particular, not symbolic

 Testing is carried out by execution of the software.
* Next: definitions “SUT” and “Test”

SUT = System Under Test

* The “System Under Test” consists of its
* Inputs
* State
* Qutputs
» State Change
e (Other) Behavior

State Change

Inputs System Outputs

Behavior

Test

* A Test for a SUT consists of
* Given [a certain state in the SUT],
* When [certain inputs are presented],

* Then [certain outputs, state change and behavior are
expected].

* Example:

Given
When
Then

it('should set the coveyRoomID property', () => {

1)

const roomsStore = CoveyRoomsStore.getlInstance();
const roomName = nanoid();

const roomController = roomsStore.getControllerForRoom(roomName) ;

expect (roomController.coveyRoomID)
.toBe (roomName) ;

Running a Test

* Construct the situation:
* Set up SUT to get the state ready
* [Optional: Prepare collaborators]

* Apply the operation inputs.

* Check the outputs, verify the state change, handle
the behavior
* Handle exceptions,
* Time-Out to handle nontermination,
* Post-check with collaborators.

Dijkstra’s Law

“Program testing can be used to
show the presence of bugs, but
never to show their absence!”
— Edsger Dijkstra

* The state space of a SUT is (usually)
infinite, but testing can only execute a
finite number of tests.

* Even if the state space is finite, it may
still be too large to make exhaustive
testing feasible.

Avd this ignores the fallibility of tests.

What if the tests are in error?

Classifying Tests

* We can classify tests according to several cross-
cutting dimensions:
* Scope: What sort of thing is the SUT?
e Purpose: Why are we testing?
* Size: What resources does testing need?
 How: How is testing performed?

Test Scope

* Unit tests: SUT = a single method/class/object

* Integration tests: SUT = combinations of units, a
subsystem

* System tests: SUT = whole system being developed

Test Purpose

* Acceptance Test

* Customer-level requirement testing

 Validation: Are we building the right system ?

* Functional Test
* “Black-Box” testing
* Specification Testing
 Structural Test
* “White-Box” testing
* Exercising the code

* Regression Test

These purposes affect
how we evaluate a
test suite.

* Prevent bugs from (re-)entering during maintenance.

10

Test Size

e Small: run on a single process, no blocking I/O
* Fast to run; can be run automatically and frequently

* Medium: run on a single machine, no network I/O (only
localhost); “hermetic”

* May be slower; delayed to overnight runs

* Large/Enormous tests: run on a network.
* May have serious $SS cost in network services or personnel.

See SoftEng @ Google Chapter 11

* https://learning.oreilly.com/library/view/software-engineering-
at/9781492082781/ch11.html#testing_overview

Manner of Testing

* Automated tests can be run without supervision
 Suitable for frequent automated runs

* Manual tests require a human to run and evaluate
A human may be needed to check Ul elements

» Tests may be ill-defined and nondeterministic
e E.g. trying to “break” software

e Customer-facing tests require an intermediary to
evaluate as well as the customer to use the

software.

Test Distribution
(Size/Scope/Manner)

Pyramid
Test Pattern

Integration
15%

Automated
GUI Tests

Integration
Tests

Software Testing
Ice Cream Cone
Antipattern

Unit 80%

From SoftEng @ Google Chapter 11

* https://learning.oreilly.com/library/view/software-engineering-
at/9781492082781/ch11.html#ttesting_overview

13

Review

* Now that you've studied this lesson, you should be
able to:
* Describe the elements of a test and how they are used;
 State Dijkstra’s law and its relevance;
 Classify tests by purpose, scope and size;
e Explain why test automation is important.

Looking Forward

* |n our next lesson, we’ll discuss “Test-Driven
Development”

15

