
CS 4350: Fundamentals of Software Engineering
CS 5500: Foundations of Software Engineering

Lesson 5.2 Test-Driven Development

Jon Bell, John Boyland, Mitch Wand
Khoury College of Computer Sciences

1

© 2021 Jonathan Bell, John Boyland and Mitch Wand. Released
under the CC BY-SA license

https://creativecommons.org/licenses/by-sa/4.0/

Learning Objectives for this Lesson
• By the end of this lesson, you should be able to:
• Define “Test-Driven Development”;
• Contrast two different phases for programming in TDD;
• Outline the strengths and weaknesses of TDD.

2

Test-Driven Development (1)
• From outside, the development

is driven by “issues”:
• New feature requests;
• Enhancement requests;
• Bug reports;
• Internal feature requests.

• Issues are the “water” in our
“TDD = water wheel” metaphor.

3

Issues

Test-Driven Development (2)
• The first task is to write a test.
• The test should fail.
• A bug report is not actionable until

we have replicated it.
• A feature request is not actionable

until we know what how it should
work.

• Tests are the “buckets” in our
metaphor.

4

Issues Write test

Test-Driven Development (3)
• Then we fix the code:
• Change code until test passes;
• All previous tests must pass too

(no regression!);
• No redesigns; goal is to fix as

quickly as possible.

• Coding turns the wheel until the
“water” is gone (issue is fixed).

5

Issues Write test

Fix code

Test-Driven Development (4)
• Clean up code:
• At leisure, “refactor” code;
• Not driven by issues;
• No (visible) behavior changes;
• All tests must still pass;
• Improve maintainability.

• Refactoring borrows momentum
to turn the wheel without the
action of “water.”

6

Issues Write test

Fix code

Refactor
code

More on
Refactoring
Later!

Caveats & Qualifications
• Typically, a new feature will require multiple tests
• The “fix” should not just be the minimum to pass

the test(s)
• The programmer should keep in mind the

spec/requirements.
• But the fix should be the simplest possible that

addresses the issue.

• Tests are run frequently and thus must be fast and
deterministic.
• Occasionally, the tests may need to be fixed as well.

7

Strengths
• Goals are concrete and actionable.
• We revisit requirements frequently:
• We make sure we are building the right product;
• Mistakes are fixed earlier.

• Separate refactoring stage means code hygiene is
not forgotten.
• Test portfolio gives confidence in maintenance.

8

Weaknesses
• Often the same person writes the test and

implements the code being tested
• Blind spots: programmer may overlook something;
• Gentleness: programmer may avoid “hard” tests.

• Tests can add to maintenance problems
• Slow, flaky or brittle tests can slow down ”wheel” (both

fixing code and refactoring)

• As defined, TDD is perhaps overly strict. (Discuss!)

9

Flaky and Brittle:
See next Lesson!

Variants
• Acceptance Test Driven Development (ATDD)
• Write “system” tests to express user requirements.
• These tests may be “large” and/or “slow”.
• Some may not be automatable.

• Behavior Test Driven Development (BTDD)
• Uses structured natural language to describe user

stories with desired behavior.
• Also “system” tests.

10

Review
• Now that you've studied this

lesson, you should be able to:
• Define “Test-Driven

Development”;
• Contrast two different phases

for programming in TDD;
• Outline the strengths and

weaknesses of TDD.

11

Looking Forward
• In our next lesson, we’ll learn about how to

evaluate tests. What makes a test suite good?

12

