CS 4350: Fundamentals of Software Engineering
CS 5500: Foundations of Software Engineering

Lesson 5.3 Evaluating Tests

Jon Bell, John Boyland, Mitch Wand
Khoury College of Computer Sciences

© 2021 Jonathan Bell, John Boyland and Mitch Wand. Released
under the CC BY-SA license

https://creativecommons.org/licenses/by-sa/4.0/

Testing Evaluates Software Systems

* Validation: Are we building the
right product?

* Verification: Are we building the
product right?

How Do We Evaluate Tests?

* Purpose: Are tests checking the
right things?

* Adequacy: Are they checking the
things right?

Learning Objectives for this Lesson

* By the end of this lesson, you should be able to:

* Describe measures of test suite adequacy, and to know
their limitations;

 Distinguish flaky and brittle tests;
 Name several test smells, and give examples;
* Explain some properties of good tests.

Review: Four Purposes of Tests

* Acceptance Test

* Customer-level requirement testing

 Validation: Are we building the right system ?

* Functional Test
* “Black-Box” testing
* Specification Testing

 Structural Test
* “White-Box” testing
* Exercising the code

* Regression Test

These purposes are
copied from Lesson 54

* Prevent bugs from (re-)entering during maintenance.

Adequacy of Acceptance Tests

* Crucial: meet with prospective
customers.

‘*\ [6 ‘) * This is difficult, time-consuming
ey ¥
¥ ¢

and expensive.

e But building the wrong product
is much worse!

N

Supplement to Acceptance
Evaluation

* Dogfooding (“Eat your own
dogfood”)

* Be your own customer.

 \Weaknesses:

* Employees unrepresentative of
customers

* Whether someone can be
compelled to use a product does
not say whether they would
purchase it.

Foreshadowing

* In Lesson 6.1, we cover “User-Centered Design”

* These techniques can help us generate and
evaluate acceptance tests.

Wore later!

Functional Testing Adequacy

* Functional Tests also known as “Black-Box” testing.

* Testing without regard to the implementation.

* Functional tests are proxies for a specification:

* A precise definition of all behavior of a SUT (outputs,
state mutation, other effects) in all situations (state and
inputs)

* A specification may be formal (mathematical), informal

(natural language) or implicit (“l know it when | see it”).

* Adequacy of test suite is probability that an
implementation passing all the tests actually fulfils the
specification.

€9 If a test contradicts the specification,
the suite including i+ has zero adeduacy!

Not coverage of
the SUT spacel

Coverage of Abstraction of SUT (1)

* Find independently testable
features (ITFs)

* Test these separately;

e Convert Cartesian product of
possibilities to sum;

* Danger: missed interaction | @d@ﬁ@-
ODOVDD

10

Coverage of Abstraction of SUT (2)

I”

e Select “special” values out of a range
* Boundary values;
* Barely legal, barely illegal inputs;
* |gnore others;

* Integer overflow a serious problem:

may be implicit
 ComAir problem due to a list
getting more than 32767 elems

* https://arstechnica.com/uncategorize
d/2004/12/4490-2/

11

Coverage of Abstraction of SUT (3)

9 * Abstract specification as a DFA

/\ }\
Jok W o0 0@5\ \a’\,\o([U J’ '0'60 91/@ s

- / R A * Then use Structural Testing over
?zzz::z; 1\ ﬁ) the abstraction.
e * Danger: system may be more

Repairﬁr)

maintenance l—-repair completed—# Repaired } com p I ex t h an t h e Mo d e I .

- stapon) L

Wait for accept
L acceplance estimate

2. ;
W@ % %, N
6, 2
% B ‘GQ
& &, c}‘)\
& component % % &
N ; 8, D, RY
@ arrives (a) % 2

9~L\ \4
i Repair N
W |)
comalt e “lack component (b (regional @é
ponent | &
e J _headquarters) 0‘9
component 2
/. arrives (b)
unable to repair ec,{,o
(not US or EU resident) 0/),0

component c‘/7, %
arrives (c)

Jsedal

(from Pezze + Young, “Software Testing and Analysis”, Chapter 10)

Repair 7\

\iqagquaners))

12

Adequacy of Structural Testing

 Structural Testing is also called “white-box testing.”
* Purpose is to exercise code implementation.

* Adequacy can be measured as %ge of goal:
* Statement coverage
* Branch coverage
e Path coverage

* Quantitative measurement is possible.

13

Structural Testing Example (1)

* Break function into basic blocks
* Build a Control-Flow Graph (CFG)

int cgi_decode(char *encoded, char *decoded) {

char *eptr = encoded;

char *dptrAdecoded;
int ok = 0;

while Beptr) I/* loop to end of string (\O’ character) */
{

charc;

c= >@ntr;
if (c=="+)[{ /* ‘+' maps to blank */
o |
}else ifT@: "%’) {V* "%xx’ is hex for char xx */
int digit_high = Hex_Values[*(++eptr)];
int digit_low = H@Values[*(ﬁeptr)];
if (digit_high ==-1 | | digit_low ==-1)
[ok f 1; /* Bad return code */
else
*dptr=16 * digi-!l_high + digit_low;
}else { /* All other characters map to themselves */
*dptrIF *eptr;

}
| ++dpt} ++eptr;
}

dptr = ‘\0’; |/ Null terminator for string */
retu k;

14

Structural Testing Example (2)

| intcoi_decoge(char encoded, ohar *decode) | ® Eva I u atl ng Te sts:

- e “test” (A,B,C,D,F,L,M)
 “a+b” (A,B,C,D,E,F,L,M)
* “%3d” (A,B,C,D,G,H,L,M)
* “%g” (A,B,C,D,G,I,L,M)

* Altogether, 100% block coverage
* (first test could be omitted)

* Also 100% branch coverage

)

alse - rue }
?:!s[;:r{= 16 * digit_high + digit_low; o=t
E \ E—‘ * If block “F” were absent,

“%3d+%g” gets 100% block
J | ’ coverage while missing a branch.

(from Pezze + Young, “Software Testing and Analysis”, Chapter 12) 15

Structural Testing: Paths

* Sometimes a fault is only
manifest on a particular path

e E.g., choosing the left branch and
then choosing the right branch.
(dashed blue path)

e But the number of paths can be
infinite
* E.g., if thereis a loop.

* There are ways to bound the
number of paths to cover.

-, #
i £
& F -
- # -
- "o
a F =
Y
o L »
#
[- "
i # #
d i
T
&
W N
#

] a
S ;
w
®
2
#
.
»

16

Structural Test Criteria

1.
2.
3.
4.

Path coverage (usually impossible) implies
Repetition-Free Path Coverage implies
Branch Coverage implies

Block Coverage = Statement coverage.

(Other coverage criteria exist, some incomparable)

See https://en.wikipedia.org/wiki/White-box testing

17

https://en.wikipedia.org/wiki/White-box_testing

100% Coverage may be Impossible

* Path coverage (even without loops)
* Dependent conditions: if (x) A; B; if (x) C;
* Edge coverage

° E.g.,if (x < 0) A; else if (x == 0) B; else if (x > 0) C;

e Statement coverage
e Dead code (e.g., defensive programming)

18

Mutation Testing

e Mutation testing is a form of structural testing

* The code in the SUT is mutated
e E.g., replacing “&&” with “| |” inan “1f” statement.

e Then we see if the test suite fails.

* Mutation testing is more than coverage, because it
checks that the change made a difference.

* Difficult in practice: Butt possivlel
e Too many mutants possible (time) httpsi/Iresearch.google/pubs/pub 46504/

* Too many mutants are equivalent or uninteresting:

e rpc.set deadline(l0); —
rpc.set _deadline(20);

Adequacy of Regression Tests (1)

* Regression tests control maintenance:
* A change cannot be committed until “all” tests pass.
* Often “all tests” means “all small automated unit tests”
* Adequacy includes whether tests cover all uses:

* Uses may include unspecified behavior:
e E.g., Users may assume that a hash result is non-negative;
* Hyrum’s law: any visible behavior may have dependents.

* Users are responsible to add tests:

e Beyoncé rule: “If you liked it you should have put a g
test on it” (SoftEng @ Google)

20

Adequacy of Regression Tests (2)

* Flaky tests are those that fail intermittently:

 Nondeterminism (e.g., hash codes, random numbers);

* Timing issues (e.g., threads, network).

* Brittle tests are those that fail when tests changed:

* Ordering (e.g., assume prior state)

* Mystery tests aren’t clear why they fail:
 How can the developer know what to do to fix?

* All these impede maintenance:

* A capricious, rigid or incomprehensible gatekeeper
impedes the ability to make progress.

These definitions
are vwot uviversal.

21

Adequacy of Regression Tests (3)

e “Test Smells” name problem aspects of tests:

* “Smell” = “Disagreeable Odor” (metaphor)
* Can be seen when reviewing tests;
 Named (as Design Patterns) for communication.

e Two lists of “"Test Smells”:
* van Deursen et al. Refactoring test code
e https://www.peruma.me/project/test-smells/

* Smelly tests more likely to be flaky, brittle,
mysterious or otherwise “bad.”

* Some examples on next slides.

22

https://dl.acm.org/doi/book/10.5555/869201
https://www.peruma.me/project/test-smells/

Test Smells (1)

it(‘writes right’, () => { RESOURCE OPTIMISM
const w = Assumes that certain external
fs.createWriteStream(‘test.txt’); resources can be used.

const t = createBiglree(); Problem'

* If assumption proves false, test
becomes “flaky.”

* Here we are assuming “test.txt” is
writable and not being used by
/* .. check result .. */ something else (e.g. this same test
h being run in parallel).

t.write(w);

w.end();

const d =
fs.readFileSync(‘test.txt’);

23

Test Smells (2)

it(‘remove only removes one’, () =>{
const tree = makeBST();
for (let i = 0; 1 < 1000; ++7) {
tree.add (i) ;

}
for (let j = 0; j < 1000; ++j) {

for (let i O; 1 < 1000; ++1i) {
if (i != j) tree.remove(i);

ki

expect(tree.contains(j)).
toBe(true) ;

CONDITIONAL TEST LOGIC
 Test code has conditionals/loops

Problem:

e Test is hard to understand.

* If it fails, no clue as to what went
wrong:

* “falseis not true”
e Testis a “mystery” test.

(Incidentally, also suffers from hard-
coding 1000 in the test.)

24

Test Smells (3)

it(‘removes max’, ()=>{
tree.remove(31);
expect(tree.size()).
toBe(4) ;

MYSTERY GUEST
e Uses information unknown to test;
* Assumes (mutable) context.

Problem

e Test will mis-behave if reordered
e Test is “brittle.”

25

What Makes Tests Good

e Tests should be hermetic
e Reduce flakiness.

* Tests should be clear
* After failure, should be clear what went wrong.

* Tests should be scoped as small as possible
e Faster and more reliable.

* Tests should make calls against public APIs
* Or they become brittle.

For a fuller treatment:
https://learning.oreilly.com/library/view/software-engineering-at/9781492082781/ch12.html#unit_testing

26

Review

* Now that you've studied this lesson, you should be
able to:

* Describe measures of test suite adequacy, and to know
their limitations;

 Distinguish flaky and brittle tests;
 Name several test smells, and give examples;
* Explain some properties of good tests.

Looking ahead

* In the next lesson, we will look closer at system
tests.

28

