
CS 4350: Fundamentals of Software Engineering
CS 5500: Foundations of Software Engineering

Lesson 5.3 Evaluating Tests

Jon Bell, John Boyland, Mitch Wand
Khoury College of Computer Sciences

1

© 2021 Jonathan Bell, John Boyland and Mitch Wand. Released
under the CC BY-SA license

https://creativecommons.org/licenses/by-sa/4.0/

Testing Evaluates Software Systems
• Validation: Are we building the

right product?
• Verification: Are we building the

product right?

2

• Purpose: Are tests checking the
right things?
• Adequacy: Are they checking the

things right?

How Do We Evaluate Tests?

3

Learning Objectives for this Lesson
• By the end of this lesson, you should be able to:
• Describe measures of test suite adequacy, and to know

their limitations;
• Distinguish flaky and brittle tests;
• Name several test smells, and give examples;
• Explain some properties of good tests.

4

Review: Four Purposes of Tests
• Acceptance Test
• Customer-level requirement testing
• Validation: Are we building the right system ?

• Functional Test
• “Black-Box” testing
• Specification Testing

• Structural Test
• “White-Box” testing
• Exercising the code

• Regression Test
• Prevent bugs from (re-)entering during maintenance.

5

These purposes are
copied from Lesson 5.1

Adequacy of Acceptance Tests
• Crucial: meet with prospective

customers.
• This is difficult, time-consuming

and expensive.
• But building the wrong product

is much worse!

6

Supplement to Acceptance
Evaluation
• Dogfooding (“Eat your own

dogfood”)
• Be your own customer.
• Weaknesses:
• Employees unrepresentative of

customers
• Whether someone can be

compelled to use a product does
not say whether they would
purchase it.

7

Foreshadowing
• In Lesson 6.1, we cover “User-Centered Design”
• These techniques can help us generate and

evaluate acceptance tests.

8

More later!

Functional Testing Adequacy
• Functional Tests also known as “Black-Box” testing.
• Testing without regard to the implementation.
• Functional tests are proxies for a specification:
• A precise definition of all behavior of a SUT (outputs,

state mutation, other effects) in all situations (state and
inputs)
• A specification may be formal (mathematical), informal

(natural language) or implicit (“I know it when I see it”).
• Adequacy of test suite is probability that an

implementation passing all the tests actually fulfils the
specification.

9

Not coverage of
the SUT space!

E.g.: If a test contradicts the specification,
the suite including it has zero adequacy!

Coverage of Abstraction of SUT (1)
• Find independently testable

features (ITFs)
• Test these separately;

• Convert Cartesian product of
possibilities to sum;
• Danger: missed interaction

10

Coverage of Abstraction of SUT (2)
• Select “special” values out of a range
• Boundary values;
• Barely legal, barely illegal inputs;
• Ignore others;

• Integer overflow a serious problem:
may be implicit
• ComAir problem due to a list

getting more than 32767 elems
• https://arstechnica.com/uncategorize

d/2004/12/4490-2/

11

Coverage of Abstraction of SUT (3)
• Abstract specification as a DFA
• Then use Structural Testing over

the abstraction.
• Danger: system may be more

complex than the model.

12

(from Pezze + Young, “Software Testing and Analysis”, Chapter 10)

Adequacy of Structural Testing
• Structural Testing is also called “white-box testing.”
• Purpose is to exercise code implementation.
• Adequacy can be measured as %ge of goal:
• Statement coverage
• Branch coverage
• Path coverage

• Quantitative measurement is possible.

13

Structural Testing Example (1)
• Break function into basic blocks
• Build a Control-Flow Graph (CFG)

14

int cgi_decode(char *encoded, char *decoded) {
char *eptr = encoded;
char *dptr = decoded;
int ok = 0;
while (*eptr) /* loop to end of string (‘\0’ character) */
{

char c;
c = *eptr;
if (c == ’+’) { /* ‘+’ maps to blank */

*dptr = ’ ’;
} else if (c == ’%’) { /* ’%xx’ is hex for char xx */

int digit_high = Hex_Values[*(++eptr)];
int digit_low = Hex_Values[*(++eptr)];
if (digit_high == -1 || digit_low == -1)

ok = 1; /* Bad return code */
else

*dptr = 16 * digit_high + digit_low;
} else { /* All other characters map to themselves */

*dptr = *eptr;
}
++dptr; ++eptr;

}
dptr = ‘\0’; / Null terminator for string */
return ok;

}

Structural Testing Example (2)
• Evaluating Tests:
• “test” (A,B,C,D,F,L,M)
• “a+b” (A,B,C,D,E,F,L,M)
• “%3d” (A,B,C,D,G,H,L,M)
• “%g” (A,B,C,D,G,I,L,M)

• Altogether, 100% block coverage
• (first test could be omitted)

• Also 100% branch coverage
• If block “F” were absent,

“%3d+%g” gets 100% block
coverage while missing a branch.

15(from Pezze + Young, “Software Testing and Analysis”, Chapter 12)

Structural Testing: Paths
• Sometimes a fault is only

manifest on a particular path
• E.g., choosing the left branch and

then choosing the right branch.
(dashed blue path)

• But the number of paths can be
infinite
• E.g., if there is a loop.

• There are ways to bound the
number of paths to cover.

16

Structural Test Criteria
1. Path coverage (usually impossible) implies
2. Repetition-Free Path Coverage implies
3. Branch Coverage implies
4. Block Coverage = Statement coverage.
(Other coverage criteria exist, some incomparable)

See https://en.wikipedia.org/wiki/White-box_testing

17

https://en.wikipedia.org/wiki/White-box_testing

100% Coverage may be Impossible
• Path coverage (even without loops)
• Dependent conditions: if (x) A; B; if (x) C;

• Edge coverage
• E.g., if (x < 0) A; else if (x == 0) B; else if (x > 0) C;

• Statement coverage
• Dead code (e.g., defensive programming)

18

Mutation Testing
• Mutation testing is a form of structural testing
• The code in the SUT is mutated
• E.g., replacing “&&” with “||” in an “if” statement.

• Then we see if the test suite fails.
• Mutation testing is more than coverage, because it

checks that the change made a difference.
• Difficult in practice:
• Too many mutants possible (time)
• Too many mutants are equivalent or uninteresting:

• rpc.set_deadline(10); ⟶
rpc.set_deadline(20);

19

But possible!
https://research.google/pubs/pub46584/

Adequacy of Regression Tests (1)
• Regression tests control maintenance:
• A change cannot be committed until “all” tests pass.

• Often “all tests” means “all small automated unit tests”

• Adequacy includes whether tests cover all uses:
• Uses may include unspecified behavior:

• E.g., Users may assume that a hash result is non-negative;
• Hyrum’s law: any visible behavior may have dependents.

• Users are responsible to add tests:
• Beyoncé rule: “If you liked it you should have put a ring
test on it” (SoftEng @ Google)

20

Adequacy of Regression Tests (2)
• Flaky tests are those that fail intermittently:
• Nondeterminism (e.g., hash codes, random numbers);
• Timing issues (e.g., threads, network).

• Brittle tests are those that fail when tests changed:
• Ordering (e.g., assume prior state)

• Mystery tests aren’t clear why they fail:
• How can the developer know what to do to fix?

• All these impede maintenance:
• A capricious, rigid or incomprehensible gatekeeper

impedes the ability to make progress.

21

These definitions
are not universal.

Adequacy of Regression Tests (3)
• “Test Smells” name problem aspects of tests:
• “Smell” = “Disagreeable Odor” (metaphor)
• Can be seen when reviewing tests;
• Named (as Design Patterns) for communication.

• Two lists of ”Test Smells”:
• van Deursen et al. Refactoring test code
• https://www.peruma.me/project/test-smells/

• Smelly tests more likely to be flaky, brittle,
mysterious or otherwise “bad.”
• Some examples on next slides.

22

https://dl.acm.org/doi/book/10.5555/869201
https://www.peruma.me/project/test-smells/

Test Smells (1)
it(‘writes right’, () => {

const w =

fs.createWriteStream(‘test.txt’);

const t = createBigTree();

t.write(w);

w.end();

const d =

fs.readFileSync(‘test.txt’);

/* … check result … */

}

RESOURCE OPTIMISM
• Assumes that certain external

resources can be used.

Problem:
• If assumption proves false, test

becomes “flaky.”
• Here we are assuming “test.txt” is

writable and not being used by
something else (e.g. this same test
being run in parallel).

23

Test Smells (2)
it(‘remove only removes one’, () =>{
const tree = makeBST();
for (let i = 0; i < 1000; ++i) {
tree.add(i);

}
for (let j = 0; j < 1000; ++j) {
for (let i = 0; i < 1000; ++i) {
if (i != j) tree.remove(i);

}
expect(tree.contains(j)).
toBe(true);

}
}

CONDITIONAL TEST LOGIC
• Test code has conditionals/loops

Problem:
• Test is hard to understand.
• If it fails, no clue as to what went

wrong:
• “false is not true”

• Test is a “mystery” test.

(Incidentally, also suffers from hard-
coding 1000 in the test.)

24

Test Smells (3)
it(‘removes max’, ()=>{
tree.remove(31);
expect(tree.size()).
toBe(4);

}

MYSTERY GUEST
• Uses information unknown to test;
• Assumes (mutable) context.

Problem
• Test will mis-behave if reordered
• Test is “brittle.”

25

What Makes Tests Good
• Tests should be hermetic
• Reduce flakiness.

• Tests should be clear
• After failure, should be clear what went wrong.

• Tests should be scoped as small as possible
• Faster and more reliable.

• Tests should make calls against public APIs
• Or they become brittle.

26

For a fuller treatment:
https://learning.oreilly.com/library/view/software-engineering-at/9781492082781/ch12.html#unit_testing

Review
• Now that you've studied this lesson, you should be

able to:
• Describe measures of test suite adequacy, and to know

their limitations;
• Distinguish flaky and brittle tests;
• Name several test smells, and give examples;
• Explain some properties of good tests.

27

Looking ahead
• In the next lesson, we will look closer at system

tests.

28

