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Testing Evaluates Software Systems 
• Validation: Are we building the 

right product?
• Verification: Are we building the 

product right?
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• Purpose: Are tests checking the 
right things?
• Adequacy: Are they checking the 

things right?

How Do We Evaluate Tests?
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Learning Objectives for this Lesson
• By the end of this lesson, you should be able to:
• Describe measures of test suite adequacy, and to know 

their limitations;
• Distinguish flaky and brittle tests;
• Name several test smells, and give examples;
• Explain some properties of good tests.
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Review: Four Purposes of Tests
• Acceptance Test
• Customer-level requirement testing
• Validation: Are we building the right system ?

• Functional Test
• “Black-Box” testing
• Specification Testing

• Structural Test
• “White-Box” testing
• Exercising the code

• Regression Test
• Prevent bugs from (re-)entering during maintenance.

5

These purposes are 
copied from Lesson 5.1



Adequacy of Acceptance Tests
• Crucial: meet with prospective 

customers.
• This is difficult, time-consuming 

and expensive.
• But building the wrong product 

is much worse!
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Supplement to Acceptance 
Evaluation
• Dogfooding (“Eat your own 

dogfood”)
• Be your own customer.
• Weaknesses:
• Employees unrepresentative of 

customers
• Whether someone can be 

compelled to use a product does 
not say whether they would 
purchase it.
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Foreshadowing
• In Lesson 6.1, we cover “User-Centered Design”
• These techniques can help us generate and 

evaluate acceptance tests.
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More later!



Functional Testing Adequacy
• Functional Tests also known as “Black-Box” testing.
• Testing without regard to the implementation.
• Functional tests are proxies for a specification:
• A precise definition of all behavior of a SUT (outputs, 

state mutation, other effects) in all situations (state and 
inputs)
• A specification may be formal (mathematical), informal 

(natural language) or implicit (“I know it when I see it”).
• Adequacy of test suite is probability that an 

implementation passing all the tests actually fulfils the 
specification.
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Not coverage of 
the SUT space!

E.g.: If a test contradicts the specification, 
the suite including it has zero adequacy!



Coverage of Abstraction of SUT (1)
• Find independently testable 

features (ITFs)
• Test these separately;

• Convert Cartesian product of 
possibilities to sum;
• Danger: missed interaction
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Coverage of Abstraction of SUT (2)
• Select “special” values out of a range
• Boundary values;
• Barely legal, barely illegal inputs;
• Ignore others;

• Integer overflow a serious problem: 
may be implicit
• ComAir problem due to a list 

getting more than 32767 elems
• https://arstechnica.com/uncategorize

d/2004/12/4490-2/
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Coverage of Abstraction of SUT (3)
• Abstract specification as a DFA
• Then use Structural Testing over 

the abstraction.
• Danger: system may be more 

complex than the model.
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(from Pezze + Young, “Software Testing and Analysis”, Chapter 10)



Adequacy of Structural Testing
• Structural Testing is also called “white-box testing.”
• Purpose is to exercise code implementation.
• Adequacy can be measured as %ge of goal:
• Statement coverage
• Branch coverage
• Path coverage

• Quantitative measurement is possible.
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Structural Testing Example (1)
• Break function into basic blocks
• Build a Control-Flow Graph (CFG)
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int cgi_decode(char *encoded, char *decoded) {
char *eptr = encoded;
char *dptr = decoded;
int ok = 0;
while (*eptr)  /* loop to end of string (‘\0’ character) */
{

char c;
c = *eptr;
if (c == ’+’) {  /* ‘+’ maps to blank */

*dptr = ’ ’;
} else if (c == ’%’) { /* ’%xx’ is hex for char xx */

int digit_high = Hex_Values[*(++eptr)]; 
int digit_low = Hex_Values[*(++eptr)];
if (digit_high == -1 || digit_low == -1)

ok = 1; /* Bad return code */
else

*dptr = 16 * digit_high + digit_low;
} else { /* All other characters map to themselves */

*dptr = *eptr;
}
++dptr; ++eptr;

}
*dptr = ‘\0’;   /* Null terminator for string */
return ok;

}



Structural Testing Example (2)
• Evaluating Tests:
• “test” (A,B,C,D,F,L,M)
• “a+b” (A,B,C,D,E,F,L,M)
• “%3d” (A,B,C,D,G,H,L,M)
• “%g” (A,B,C,D,G,I,L,M)

• Altogether, 100% block coverage
• (first test could be omitted)

• Also 100% branch coverage
• If block “F” were absent, 

“%3d+%g” gets 100% block 
coverage while missing a branch.

15(from Pezze + Young, “Software Testing and Analysis”, Chapter 12)



Structural Testing: Paths
• Sometimes a fault is only 

manifest on a particular path
• E.g., choosing the left branch and 

then choosing the right branch.
(dashed blue path)

• But the number of paths can be 
infinite
• E.g., if there is a loop.

• There are ways to bound the 
number of paths to cover.
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Structural Test Criteria
1. Path coverage (usually impossible) implies
2. Repetition-Free Path Coverage implies
3. Branch Coverage implies
4. Block Coverage = Statement coverage.
(Other coverage criteria exist, some incomparable)

See https://en.wikipedia.org/wiki/White-box_testing
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https://en.wikipedia.org/wiki/White-box_testing


100% Coverage may be Impossible
• Path coverage (even without loops)
• Dependent conditions: if (x) A; B; if (x) C;

• Edge coverage
• E.g., if (x < 0) A; else if (x == 0) B; else if (x > 0) C;

• Statement coverage
• Dead code (e.g., defensive programming)

18



Mutation Testing
• Mutation testing is a form of structural testing
• The code in the SUT is mutated
• E.g., replacing “&&” with “||” in an “if” statement. 

• Then we see if the test suite fails.
• Mutation testing is more than coverage, because it 

checks that the change made a difference.
• Difficult in practice:
• Too many mutants possible (time)
• Too many mutants are equivalent or uninteresting:

• rpc.set_deadline(10); ⟶
rpc.set_deadline(20);
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But possible!
https://research.google/pubs/pub46584/



Adequacy of Regression Tests (1)
• Regression tests control maintenance:
• A change cannot be committed until “all” tests pass. 

• Often “all tests” means “all small automated unit tests”

• Adequacy includes whether tests cover all uses:
• Uses may include unspecified behavior:

• E.g., Users may assume that a hash result is non-negative;
• Hyrum’s law: any visible behavior may have dependents.

• Users are responsible to add tests:
• Beyoncé rule: “If you liked it you should have put a ring
test on it” (SoftEng @ Google)
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Adequacy of Regression Tests (2)
• Flaky tests are those that fail intermittently:
• Nondeterminism (e.g., hash codes, random numbers);
• Timing issues (e.g., threads, network).

• Brittle tests are those that fail when tests changed:
• Ordering (e.g., assume prior state)

• Mystery tests aren’t clear why they fail:
• How can the developer know what to do to fix?

• All these impede maintenance:
• A capricious, rigid or incomprehensible gatekeeper 

impedes the ability to make progress.
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These definitions 
are not universal.



Adequacy of Regression Tests (3)
• “Test Smells” name problem aspects of tests:
• “Smell” = “Disagreeable Odor” (metaphor)
• Can be seen when reviewing tests;
• Named (as Design Patterns) for communication.

• Two lists of ”Test Smells”:
• van Deursen et al. Refactoring test code
• https://www.peruma.me/project/test-smells/

• Smelly tests more likely to be flaky, brittle, 
mysterious or otherwise “bad.”
• Some examples on next slides.
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https://dl.acm.org/doi/book/10.5555/869201
https://www.peruma.me/project/test-smells/


Test Smells (1)
it(‘writes right’, () => {

const w = 

fs.createWriteStream(‘test.txt’);

const t = createBigTree();

t.write(w);

w.end();

const d =

fs.readFileSync(‘test.txt’);

/* … check result … */

}

RESOURCE OPTIMISM
• Assumes that certain external 

resources can be used.

Problem:
• If assumption proves false, test 

becomes “flaky.”
• Here we are assuming “test.txt” is 

writable and not being used by 
something else (e.g. this same test 
being run in parallel).
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Test Smells (2)
it(‘remove only removes one’, () =>{
const tree = makeBST();
for (let i = 0; i < 1000; ++i) {
tree.add(i);

}
for (let j = 0; j < 1000; ++j) {
for (let i = 0; i < 1000; ++i) {
if (i != j) tree.remove(i);

}
expect(tree.contains(j)).
toBe(true);

}
}

CONDITIONAL TEST LOGIC
• Test code has conditionals/loops

Problem:
• Test is hard to understand.
• If it fails, no clue as to what went 

wrong:
• “false is not true”

• Test is a “mystery” test.

(Incidentally, also suffers from hard-
coding 1000 in the test.)
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Test Smells (3)
it(‘removes max’, ()=>{
tree.remove(31);
expect(tree.size()).
toBe(4);

}

MYSTERY GUEST
• Uses information unknown to test;
• Assumes (mutable) context.

Problem
• Test will mis-behave if reordered
• Test is “brittle.”
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What Makes Tests Good
• Tests should be hermetic
• Reduce flakiness.

• Tests should be clear
• After failure, should be clear what went wrong.

• Tests should be scoped as small as possible
• Faster and more reliable.

• Tests should make calls against public APIs
• Or they become brittle.
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For a fuller treatment:
https://learning.oreilly.com/library/view/software-engineering-at/9781492082781/ch12.html#unit_testing



Review
• Now that you've studied this lesson, you should be 

able to:
• Describe measures of test suite adequacy, and to know 

their limitations;
• Distinguish flaky and brittle tests;
• Name several test smells, and give examples;
• Explain some properties of good tests.
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Looking ahead
• In the next lesson, we will look closer at system 

tests.
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