
CS 4350: Fundamentals of Software Engineering
CS 5500: Foundations of Software Engineering

Lesson 5.4 Testing Systems

Jon Bell, John Boyland, Mitch Wand
Khoury College of Computer Sciences

1

© 2021 Jonathan Bell, John Boyland and Mitch Wand. Released 
under the CC BY-SA license

https://creativecommons.org/licenses/by-sa/4.0/


Outline of this lesson
1. How can we test complex systems?
2. What are some ways to substitute out parts of 

the system?

2



Learning Objectives for this Lesson
• By the end of this lesson, you should be able to:
• Contrast “mocks” and “spies” in testing;
• Describe the limitations of automated testing;
• Give some useful examples of nondeterministic testing.

3



• Database component
• Contents may need to reflect/simulate real-world;
• Data may be expensive/proprietary/confidential.

• Network connections
• ”Real” connections may be slow/flaky/disrupted;
• Resources may have changed since test was written.

• Environment
• Interactions with OS, locale or other software.

• Human actors
• Ultimately unpredictable.

Large Systems are Hard to Test

4

Testing(!) framework 
“jest” didn’t install

because of Turkish locale
(Piazza @108 sp21)



Two Ways to Handle Difficulties
Pay the cost, do the test
• A large test can reveal problems 

that smaller tests can’t.
• Choose particular times (rare!) 

to do particular large tests.
• An “enormous” test at Google 

simulated an earthquake in 
Mountain View, CA.
• See Chapter 14 of SE@Google

Automate with tools:
• Use “Test Doubles”

1. Stubs
2. Mocks / Spies
3. Fakes

• Random testing
• “Fuzzing”
• Against a reference 

implementation.

5

Rest of
Lesson

https://learning.oreilly.com/library/view/software-engineering-at/9781492082781/ch14.html


Mo

Test Double Example

6

Network
Resources

Database

Business 
Logic

Mock network

Fake Database

Random user



Test Stub
• Supply an object with the same interface:
• Same methods;
• Default result values.

• The stub gets the test to run:
• If the client blindly uses the stub, it can proceed;
• If the client expects something from the object, the test 

will likely fail.

• Need two more things:
1. Remember how the stub was used;
2. Tell the stub what to do when it is called.

7



Test Spies
• A test spy remembers how the object was called
• Then the test harness can check what happened;
• For example: a particular method should be called

1. First with parameters “foo” and 42;
2. Then with parameters “quux” and -88.

• A spy can be useful on the “real” object:
• What was sent on the network?
• How many times a problem was logged?
• What was inserted in the database?

• But most often used with a “mock.”

8



Test Mocks
• A test mock has scripted results:
• If such-and-such a method is called

• return some particular value.

• A complex mock can have many scripts:
• Multiple methods;
• Different results for subsequent calls.

• Useful mocking assumes we know how mocked 
object will be used.
• If a “mock” has real logic, it becomes a “fake”.

9



Test Fakes
• A fake has an implementation of the object being 

replaced
• A low-fidelity fake implements things partially

• Enough to work for the test.
• A high-fidelity fake implements most aspects:

• Usually all functional aspects;
• Usually not as efficiently or as scalable.

• The purpose of the fake is to avoid 
processes/network/cost:
• So the test can be cheap and deterministic.

10



Random Input
• To replace a user, we can program a “bot”
• Randomly use mouse, press buttons;
• Arbitrary text;
• Fast or slow.

• Smarter (“Fuzzing”)
• Capture real actions;
• Then make targeted mutations.
• (This applies also to programs taking text input.)

• Expected result can only be imprecise:
• E.g., “not crash” or “not leak secrets”.

11



Related: Random Testing

12

SUT

Ref.
Impl.

Random
Input

Generator

=
? Errors



Weaknesses of Test Doubles
• The Mock/Fake may not behave correctly
• The test harness may assume wrong behavior;
• Particularly an issue if original object changes

• Mocks have to be maintained as well!
• Solution: Test the mock/fake against a higher fidelity 

fake, or against the real thing.

• The SUT may use a different algorithm:
• The Spies expect a particular usage of double;
• The test is “brittle” because it depends on internal 

behavior of SUT;

13



Review: Learning Objectives for this Lesson
• You should now be able to:
• Contrast “mocks” and “spies” in testing;
• Describe limitations of automated testing;
• Give some useful examples of nondeterministic testing.

14



Looking forward...
• In our next lesson, we’ll discuss designing for the 

user experience.

15


