CS 4350: Fundamentals of Software Engineering CS 5500: Foundations of Software Engineering

Lesson 6.1 Requirements and User-Centered Design

Jon Bell, John Boyland, Mitch Wand Khoury College of Computer Sciences

© 2021 Jonathan Bell, John Boyland and Mitch Wand. Released under the <u>CC BY-SA</u> license

Outline of This Lesson

- 1. How do know what software should be built?
- 2. What does it mean for software to be usable?
- 3. How can we tell if we are building a usable product?

Image courtesy of Carnegie Mellon University Human-Computer Interaction Institute

Learning Objectives for this Lesson

- By the end of this lesson, you should be able to:
 - List the three main steps to determine requirements;
 - Describe the major aspects of usability;
 - Articulate the process of user-centered design;
 - Explain several heuristics for good user interaction.

Requirements

- A three-step process:
 - Elicitation: Discover requirements from prospective customers.
 - Analysis: Understand and prioritize requirements elicited.
 - Validation:
 Bring back requirements to customer for confirmation.

Validation

Elicitation

Analysis

Goal: Build the Right Product

- If the product doesn't do what the users want...
 - ... we've wasted time and money.
- If the product is not usable by the users...
 - ... we will need to invest time/money to make it usable.
- Users are often not sure exactly what they want,
 - ... so we need to iterate the requirements process.
- We shift development "to the left" (closer to user)
 - We correct mistakes
 - Before design, or else
 - Before coding, or else
 - Before debugging, or else
 - Before deployment.

"Usability": a Definition

- Usability is ...
- ... a measure of how ...
 - ... an artifact ... ←
 - ... impacts ...
 - ... a human ...
 - ... with particular goals.

Usability (1 of 5): Learnability

- How easy is it to learn to use the artifact to accomplish a goal?
- A "steep" learning curve requires a lot of expertise before one can achieve results.

Usability (2 of 5): Effectiveness

- How often does the use lead to completion of a goal?
- Is the artifact "fit for purpose"?

Usability (3 of 5): Productivity

- How large a multiplier of human effort does this artifact give?
- Does it make hard things easy? (or the reverse!)

Usability (4 of 5): Retainability

- How long is the ability to use the artifact retained between uses?
- Inner consistency can help mitigate a steep learning curve.

Usability (5 of 5): Satisfiability

- How pleasant is the artifact to use?
- Is it elegant and simple?

User-Centered Design

- A system is evaluated from the user viewpoint.
 - Ideally by the users!
- Tension: when do we evaluate?
 - An incomplete product may not be usable;
 - If a product is complete, using evaluation has cost.
- Resolution: evaluate prototype!

Prototype (1 of 3): Paper Simulation

- Hand-drawn user interfaces:
 - on paper or card;
 - made on the spot.
- Developers animate:
 - Present to test user;
- Users act:
 - Indicate what they would do.

Prototype (2 of 3): Wizard-of-Oz

- Software has right "look"
 - But barely functional.
- Scripted interaction only
 - All responses are "canned."
- Illusion is effective.

Prototype (3 of 3): Working Prototype

- The software system partly implemented:
 - User interface fully realized;
 - Functionality limited.
- Particularly for feature requests:
 - New feature can get quick-and-dirty implementation
 - Quickly get feedback if the right feature is implemented.
- Comparison with TDD:
 - In TDD: feature request is realized in a test;
 - In UCD: feature request is realized in a user-interface.

In both cases, we delay implementation until more understanding gained: Move decisions closer to customers.

Forms of User Evaluation

- Empirical evaluation
 - "How many tasks accomplished in N minutes?"
- Qualitative evaluation
 - Observers find patterns in interaction;
 - Users give feedback after use.
- "Dogfooding" (internal evaluation)
 - Developers use product as soon as feasible.
- Heuristic evaluation
 - Evaluate against best practices.

Best Practice Heuristics (Nielsen)

- "Discount (\$) usability engineering methods"
 - Pioneered by Jakob Nielsen in the 1990s
- Involves a small team of evaluators to evaluate an interface based on recognized usability principles
- Heuristics-"rules of thumb"

Much cheaper than an evaluation with "real" users!

(Adapted from slides by Bonnie John and Jennifer Mankoff)

H1: Visibility of System Status

- Interface should show:
 - What input has been received;
 - What processing is currently happening;
 - What results have already been completed.
- This feedback allows
 - user to monitor progress towards solution of their task;
 - allows the closure of tasks; and
 - reduces user anxiety (Lavery et al).
- Great podcast with interview with Brad Myers, creator/popularizer of progress bar in his 1985 PhD thesis (<u>99 Percent Invisible 9/3/19</u>)

Time Left: 00:00:19 searching database for matches

46%

H2: Match Between System and Real World

- Speak the users' language.
- Follow real world conventions.
- Don't use internal jargon ("X.25 connection discarded")
- "Gray out" illegal options.

S, Withdrawals	S, Withdrawals
X.25 connection discarded due to network congestion. Local limits now in effect	Maximum withdrawal of \$50 at this time
\$50 \$100 \$150	\$100 \$160

H3: User Control and Freedom

- "Exits" for mistaken choices: undo, redo, cancel
- Don't force down fixed paths.

H4: Consistency and Standards

- Same words, situations, actions, should mean the same thing in similar situations;
- Same things look the same and be located in the same place.
- Text consistent with figures. -
- Different things should be different.

H5: Error Prevention

Due

- Careful design can prevent a problem from occurring in the first place.
- It's easier to point to a date on the calendar than to type it in the correct format.

H6: Recognition rather than Recall

- Make objects, actions and options visible or easily retrievable.
- It's easier to pick out the channel we want to add than to enter the correct name.

H7: Flexibility and Efficiency of Use

Edit	Selection	View	Go	Run
Undo				ЖZ
Rec	ob		仓	жZ
Cut	:			ЖХ
Cop	ру			ЖС
Pas	ste			жv
Fine	d			ЖF
Rep	place		7	₩F
Fine	d in Files		仓	₩F
Rep	place in Files		仓	ЖH
Toggle Line Comment [#/]				
Tog	gle Block Co	omment	7	ΰА
Em	met: Expand	Abbrev	viation	→I
Sta	rt Dictation			
Em	oji & Symbol	S	^%S	oace

- Accelerators for experts (e.g., gestures, kb shortcuts)
- Allow users to tailor frequent actions (e.g., macros)

H8: Aesthetic and Minimalist Design

• Interfaces should not contain irrelevant or rarely needed information.

Form Title (appears above URL in mos	Backgound Color:	
Q&D Software Development Order Desk	FFFBF0	
Form Heading (appears at t	Text Color:	
Q&D Software Development Order Desk	🔀 Center	000080
E-Mail respones to (will not appear on	Alternate (for mailto forms only)	Background Graphic
dversch@q-d.com		
Text to appear in Submit button	Text to appear in Reset button	O Mailto
Send Order	Clear Form	i Cici
Scrolling Status	Bar Message (max length = 200 characters)]
WebMania 1.5b with Image Map Wizard	is here!!	
KK Prev Tab		Next Tab >:

H9: Help users recognize, diagnose, and recover from errors

- Use standards to convey errors;
- Error messages should be in language user will understand;
- Precisely indicate the problem;
- Constructively suggest a solution.

H10: Help and Documentation

♀ Tell me what you want to do

Recently Used Actions

Flip Horizontal

Try

"start presentation"

"change layout of slide"

"insert picture"

"insert shape"

• Should be

- Easy to search;
- Focused on the user's task;
- List concrete steps to carry out;
- Always available.

Review: Learning Objectives for this Lesson

- You should now be able to:
 - List the three main steps to determine requirements;
 - Describe the major aspects of usability;
 - Articulate the process of user-centered design;
 - Explain several heuristics for good user interaction.

Looking forward...

• In the next part of Lesson 6, we describe React, a user-interface architecture.