
CS 4350: Fundamentals of Software Engineering
CS 5500: Foundations of Software Engineering

Lesson 6.2 Introduction to “React”

Jon Bell, John Boyland, Mitch Wand
Khoury College of Computer Sciences

1

© 2021 Jonathan Bell, John Boyland and Mitch Wand. Released
under the CC BY-SA license

https://creativecommons.org/licenses/by-sa/4.0/

Topic for this Lesson
• React/JS: Front-End Framework
• Created by Facebook; released to open-source.

• Describe architecture and big ideas.

• https://reactjs.org/

2

https://reactjs.org/

Learning Objectives for this Lesson
• By the end of this lesson, you should be able to:
• Explain how component reuse simplifies application

development;
• Describe the three key ideas of the React framework.

3

HTML: Markup Language of the Web
• Language for describing

structure of a document:
• Denotes hierarchy of

elements.
• What might be elements in this

document?

4

Rich Interactive Web Applications
• Not just static HTML
• Infinite scrolling of cat photos.
• In video, more photos are

“loaded” when we get near the
bottom.

5

Widgets in Web UIs
• Each widget has both visual presentation

& logic
• e.g., clicking on like button executes

logic related to the containing widget
• Logic and presentation of individual

widgets are strongly related,
• Widgets often occur more than once

• e.g., comment/like widgets
• Changes to data should cause changes to

widget
• e.g., new images, new comments

should show up in real time

6

Key Idea: Components
• Organize related logic and

presentation into a single unit
• Includes necessary state and

the logic for updating this state
• Includes presentation for

rendering this state into HTML
• Synchronizes state and visual

presentation
• Whenever state changes, HTML

should be rendered again

7

“Like” Button Component
• What does it keep track of?
• Is it liked or not?
• What post is it associated with?

• What logic does the button have?
• When changing “like” status, send

update to server.
• How does the button look?
• Filled in if liked, hollow if not.

• Problem: how do we automatically
update the button to look filled in
when it’s liked?

8

Design Architecture Possibilities

PHP Java
Applet

CGI
Perl React

9

Code embedded in HTML

HTML embedded in Code

Server Client

Embedding
Code in HTML
<p>Counting to three:</p>
<% for (int i=1; i<4; i++) { %>
<p>This number is <%= i %>.</p>

<% } %>
<p>OK.</p>

• Convenient, but …
• Code infeasible to statically

check (it is broken up in different
HTML comments).

HTML in Code
return “<p> Items:” + is +
“\nTotal: “ + total +
“</p>\n”;

• Code has primacy (and can be
checked).
• Creation of HTML is error-prone.

10

Where Does Code Run?
On Server (back end)
• If it runs on the server, we have

full control of the HTML
generated and can (in principle)
use private state.
• But we have no control on the

rendering process for the HTML:
• Incrementality is on client.

• And have to push changes to
client.

On Client (front end)
• If on the client, the code runs in

a variety of (perhaps adversarial)
contexts,
• But we can control

incrementality.

11

React: Front End Framework for
Components
• Key concepts:
• Embed HTML in JavaScript;
• Track application “state”;
• Automatically and efficiently re-

render page in browser based on
changes to state.

• React developed by Facebook:
• Also used in airbnb, Uber,

Pinterest, Netflix, Twitter and 8855
more

12

Embed HTML in JavaScript/TypeScript
return <div>Hello {person.name}</div>;

• Can create HTML by using HTML syntax:
• Inside braces { … } we can put arbitrary code, the result

of which will be converted to a string in the HTML.
• All open tags must be closed (as in XML).

• Can create components with Capitalized tags:
return <Card> <p>Adriel</p> </Card>;
• Here “Card” is a user-defined component.

• Syntax is transpiled back to JavaScript (as is TS).

13

Example Component Definition
import React from ‘react’;
export interface GreetOpts {

name : string;

}

export const Greet =
(opts : GreetOpts) => {

return <p>
Hello {opts.name},
nice to meet you!

</p>;

}

• This code defines how to render
<Greet name=“Chris”/>

• Each component needs own file.
• If it has properties, export an

interface defining them.
• Component defined as a

function taking properties and
returning HTML.
• Properties are immutable.

14
Components can also be implemented with classes.

State vs. Properties
• State changes to reflect the

current state of the component.
• Can (and should) change based on

the current data of component.

• A ”like” button keeps track of:
• Is it liked or not (state)
• What post this is associated with

(property)

• If component is a function, how
do we represent the state?

15

Hooks Give Access to State
• Replace the body of the function with:
const [formal, setFormal] =
useState(true);

if (formal) {

return <p>Hello, {opts.name},
how do you do?</p>;

} else {

return <p>Hi, {opts.name},
what’s up?</p>;

}

• The “useState” function …
• … declares a state variable, ...
• ... with an initial value.

• The “useState” function returns
an array of two values:

1. The current value;
2. A setter taking a new value.

• Each time you call it, you get a
new state variable.
• Only call at top level of function!

16

Warning: The setter is currently unused!

Reacting to change
• How does the greeting update?

1. If the setter is called, the function is invoked again by
framework.

2. Then the framework diffs output of render with
previous call to render, updating only that part of DOM
(Document Object Model) that changed.

• The last step, “reconciliation,” is a key idea of React.

17

Reconciliation: Efficient Update
• React updates the DOM (HTML)

each time the components
change.
• Basically, change is based on

order of components
• Second child of Card is destroyed.
• First child of Card has text

mutated.

• Before:

• After:

18

<Card>
<p>Paragraph 1</p>
<p>Paragraph 2</p>

</Card>

<Card>
<p>Paragraph 2</p>

</Card>

Reconciliation is much more complicated.

Review: Learning Objectives for this Lesson
• You should now be able to:
• Explain how component reuse simplifies application

development;
• Describe the three key ideas of the React framework.

19

Looking ahead
• The next part of Lesson 6

includes a tutorial building a
simple TODO app in React.

20

