
CS 4350: Fundamentals of Software Engineering
CS 5500: Foundations of Software Engineering

Lesson 7.1 Bugs

Jon Bell, John Boyland, Mitch Wand
Khoury College of Computer Sciences

1

© 2021 Jonathan Bell, John Boyland and Mitch Wand. Released 
under the CC BY-SA license

https://creativecommons.org/licenses/by-sa/4.0/


Outline of this lesson
1. How a project should handle bug reports
2. Effective debugging

2



Learning Objectives for this Lesson
• By the end of this lesson, you should be able to:
• Describe best practices around bugs; 
• Distinguish the concept of where a failure is manifest 

versus where fault is in execution;
• Contrast synchronic (in current code) versus diachronic 

(in changes) fault-locating;
• Review the basic operations provided by debuggers.

3



What to Do When a Bug is Reported
• Log the issue in a tracking 

system
• Many possibilities: github issues, 

Bugzilla, gerrit, … .
• Connect to symptoms, tests, 

causes and fixes.
• User-searchable helps prevent 

duplicate/invalid reports.
• In an open-source project, recent 

activity gives confidence to users 
that the project is still live.

4



First Steps
• Assign a priority
• How crucial it is to fix the problem.

• Assign a responsible party
• Not blame: rather who will work on it first.

• Try to find a Short Self-Contained Correct Example
S: remove everything that is not necessary;
S-C: add everything needed to demonstrate problem;
C: the example is valid;
E: a concrete example of bug behavior.
(Ideally reporter gives one or gets close.)

5



Assignee tasks
• The assignee needs to investigate the report to see 

if it is actionable, or else it is …
• Invalid: not relevant to the software
• Duplicate: already reported
• Fixed: in a recent version
• Can’t reproduce: back to reporter for more data

• Otherwise, if the bug is reproducible:
• Complete SSCCE if not already done.
• Convert SSCCE into a (failing) test:

• Small scope and automated, if possible.

6

You may recall this step from TDD



“Debugging” 
• The term “bug” (or a “glitch”) 

dates at least back to Thomas 
Edison in the 19th century.
• ”Debugging” also predates the 

famous bug found in Mark II, as 
related by Admiral Grace 
Hopper.

7



Debugging has Two Phases
• Diagnosis
• Determine the fault causing the problem observed.
• For example:

• Faulty computation;
• Incorrect assumption;
• Mis-use of another component.

• Correction
• Correct the fault so that test passes (and none fail).
• For example:

• Fix computation;
• Add code to handle unhandled cases.

8

Basically, coding



Anti-Pattern: Mutation Debugging
• Avoiding diagnosis is a mistake.
• If you don’t understand what’s 

going wrong, how can you fix it?

• Mutation debugging:
• Make a change to the program
• Re-run all tests.
• Repeat unless all pass.

• A (poor) version of genetic 
programming, with similar 
(unmaintainable) results.

9

Mutate
Program

Run
Tests

Tests pass

Tests fail



(Synchronic) Fault Location
• Initially, fault must lie between 

program start and failure point.
• Use tools to narrow dynamic 

scope.
• Iterate until fault located.
• ”Wolf Fence” technique of 

Edward Gauss 

10

A form of Binary Search

https://dl.acm.org/doi/abs/10.1145/358690.358695


Diachronic Fault Location
• If the fault was not present in an 

earlier version, we can use 
diachronic fault location to find 
when it was introduced.
• Same binary search approach, 

but this time over the versions 
of software.
git bisect

• This uses an automated test to 
indicate presence.

11

Commit 1 (no error)

Commit 2

Commit 3

…

Commit introducing fault

...

Commit N (error present)



Debugging as Hypothesis Testing
• Guessing a diagnosis:
• Experience (pattern matching);
• Community (colleagues, stackoverflow.com);
• Information from faulty run.

• Verbalize hypothesis:
• Good for bug reporting system;
• Direct debugging actions.

• Testing a diagnosis:
• Use debugging techniques to test;
• Better once fault located to a narrow area.

12



Using Debugging Tools
• Techniques:
• Print statements,
• Special-purpose code changes (e.g., assertions),
• Breakpoints,
• Stepping,
• Watchpoints.

• Use tools for a purpose:
• Fencing the wolf;
• Testing the hypothesis.

13



Assisting Future Debugging
• Assisting fault location:
• “fail-fast”: stop as soon as 

problem noticed;
• Check invariants frequently 

during testing.
• Assisting hypothesis testing:
• Make assumptions explicit 

(and checked!);
• Log interactions with other 

components. 

14



Review: Learning Objectives for this Lesson
• You should now be able to:
• Describe best practices around bugs; 
• Distinguish the concept of where a failure is manifest 

versus where fault is in execution;
• Contrast synchronic (in current code) versus diachronic 

(in changes) fault-locating;
• Review the basic operations provided by debuggers.

15



Next steps...
• In our next lesson, we’ll discuss using git in teams.

16


