CS 4350: Fundamentals of Software Engineering
CS 5500: Foundations of Software Engineering

Lesson 8.1 Static Program Analysis

Jon Bell, John Boyland, Mitch Wand
Khoury College of Computer Sciences

© 2021 Jonathan Bell, John Boyland and Mitch Wand. Released
under the CC BY-SA license


https://creativecommons.org/licenses/by-sa/4.0/

Alternatives to Testing

* So “program testing can be used to show the
presence of bugs, but never to show their absence”
(Dijkstra’s Law), what can we do?

 Testing is limited to finite concrete cases;
e Can we check unbounded symbolic cases?

* Yes! *

"Sowme restrictions apply:
o Can show absewce, but cannot show presewce;
* Sowmetimes cannot show either;
e How much time do you have?




Outline of this lesson

1. The impractical goal of program verification.

2. What lies between testing and verification?
a. Partial verification

b. Optional type systems
* (Should be familiar: TypeScript anyone?)

c. Bugfinders
e (Also familiar: es-lint)



Learning Objectives for this Lesson

* By the end of this lesson, you should be able to:
* List challenges preventing full verification;
* Define false/true negatives/positives;

* Variously describe the effects of false positives and
negatives;

* Explain when to integrate static analysis into builds.



Verification Checks Code Against
Specification

A Specification: What the system
is supposed to do.

®

B Code: What the system actually
does.

e Difficulties:

* Need a full formal specification;

* Even proving termination is
undecidable, let alone proving
adherence to a specification.




A Full Formal Specification

e ... precisely defines exactly the behavior that the
system should have:

* What the outputs are in terms of the inputs;
* What behaviors the system should have.

* Wait a minute! That’s called a program.

* Yes, a full formal specification is essentially a
program, perhaps expressed at a[higher Ievel]
... with all the complexity that entails,

Twefficiently
(w/o algorithms)

 ...including bugs!

we can’t avoid
Human fallibili+y.




Specification Must Be Modular

* Without modularity
* Specification is incomprehensible
* Itis likely inadequate (i.e., doesn’t specify what we want).

 Specification is unprovable

* Proof checking is usually exponential or worse
* Must break down into usable pieces.

 Specification has to be maintained as code is:

* Every function/class/module needs specification.
* Even every loop needs its own specification.



Proof Must Be Modular Too

A verification proof is usually very complex,
needing lemmas written by hand.
* Typically written and stored along with the specification.

* Engineering proofs is a highly specialized skill:
* Hint: harder than coding > More SSS
* Proof must be updated
e every time program or specification changes!
e Usually too expensive unless safety critical and
mandated by regulation.



Verification Doesn’t Prove Presence of Bugs

* Verification fails if

* Missing lemma for unit behavior, or
Cannot verify loop invariant, or
Functional specification missing a piece, or
Run out of time trying to construct proof, or
Specification is wrong.

e Constructing the proof can easily take as long as
constructing the software, if not much more.

 Just because there is no proof does not mean the
software has a fault.



100%

75%

50%

Bugs found

25%

0%
0%

Verificatio~

Partial
Verification

25%

Bug Finding

Bug Finders

Optional

Type
Systems

Linters

J 75%
Reports indicating bugs

Testing

100%

10



Report

Bug Detection

We geverate a Fa Ise
false alarm.

True
Positive

Positive

Bug is absent

False
Negative

We correctly True
find vo problem. Negative

No Report

We correctly
detect a bug,

Bug is present

We miss a bug
m the system.

11



Static Program Analysis

* Bug finders and partial verification use static
program analysis
* Reads in the program (just like a compiler);

* Analyze to determine properties:
e E.g., are all open resources eventually closed?

e “static” means "without running the program”.

* All non-trivial properties are undecidable

* Approximations are always necessary: make a choice
* E.g., miss some closes of open resources, or
* Miss some open resources not being closed.

12



Compromises with Static Analysis

* Getting precise results may take time:
* Many algorithms are exponential in precision measures.

* Getting precise results may require whole program:

* |f parts of the program loaded at runtime:

* Analysis results may be very imprecise, or (worse)
* Incorrect, if they assume the whole program is available.

* Getting precise results may require intervention:

* Code may need to be annotated with information:
* E.g., this method may return an open resource.

13



Effects of Analysis Imprecision

FALSE NEGATIVES FALSE POSITIVES
* The static analysis misses * The static analysis reports a
something “bad” in program: problem that doesn’t exist:
* Bug not found. * There is no bug.
e Can give a false sense of * Real bugs can be swamped by a
security. flood of spurious reports.

* Can be reduced, but at the cost * Programmer time is wasted
of false positives! chasing down false leads.

14



Google defined “Effective False Positive”

* A report from static analysis is effectively false,
* Ifitis ignored by developers;
 Whether or not it represents a true bug.

* Even if the report is technically correct

* |t may refer to something considered unimportant:

* E.g., who cares if all the files aren’t closed, if the program is
about to exit anyway.

* E.g., yes, there is a race condition between two logging
statements, but that’s not important.

* Even if the report is technically wrong
* Developers may see potential problem, and fix.

15



Criteria For Automated Program Analysis

e Efficient and Easy

e Should not require whole program or annotations.

* Rarely spurious
* No more than 10% effectively false positive.

* Actionable
* Should point out things easy to fix.

* Effective
* Problems should be perceived as important.

Source: Software Engineering at Google, Chapter 20

Auntomatically applied
during Code Review.

16


https://learning.oreilly.com/library/view/software-engineering-at/9781492082781/ch20.html

Review: Learning Objectives for this Lesson

* You should now be able to:
* List challenges preventing full verification;
* Define false/true negatives/positives;

* Variously describe the effects of false positives and
negatives;

* Explain when to integrate static analysis into builds.

17



Next steps...

* |n our next lesson, we'll talk about Code Smells and
Refactoring.

18



