
CS 4350: Fundamentals of Software Engineering
CS 5500: Foundations of Software Engineering

Lesson 8.1 Static Program Analysis

Jon Bell, John Boyland, Mitch Wand
Khoury College of Computer Sciences

1

© 2021 Jonathan Bell, John Boyland and Mitch Wand. Released 
under the CC BY-SA license

https://creativecommons.org/licenses/by-sa/4.0/


Alternatives to Testing
• So “program testing can be used to show the 

presence of bugs, but never to show their absence” 
(Dijkstra’s Law), what can we do?
• Testing is limited to finite concrete cases;
• Can we check unbounded symbolic cases?

• Yes! 

2

*Some restrictions apply:
• Can show absence, but cannot show presence;
• Sometimes cannot show either;
• How much time do you have?
• …

*



Outline of this lesson
1. The impractical goal of program verification.
2. What lies between testing and verification?

a. Partial verification
b. Optional type systems

• (Should be familiar: TypeScript anyone?)
c. Bug finders

• (Also familiar: es-lint)

3



Learning Objectives for this Lesson
• By the end of this lesson, you should be able to:
• List challenges preventing full verification;
• Define false/true negatives/positives;
• Variously describe the effects of false positives and 

negatives;
• Explain when to integrate static analysis into builds.

4



Verification Checks Code Against 
Specification

A Specification: What the system 
is supposed to do.
B Code: What the system actually 
does.

• Difficulties:
• Need a full formal specification;
• Even proving termination is 

undecidable, let alone proving 
adherence to a specification.

5



A Full Formal Specification
• … precisely defines exactly the behavior that the 

system should have:
• What the outputs are in terms of the inputs;
• What behaviors the system should have.

• Wait a minute!  That’s called a program.
• Yes, a full formal specification is essentially a 

program, perhaps expressed at a higher level.
• … with all the complexity that entails,
• … including bugs!

6

We can’t avoid
Human fallibility.

Inefficiently
(w/o algorithms)



Specification Must Be Modular
• Without modularity
• Specification is incomprehensible

• It is likely inadequate (i.e., doesn’t specify what we want).
• Specification is unprovable

• Proof checking is usually exponential or worse
• Must break down into usable pieces.

• Specification has to be maintained as code is:
• Every function/class/module needs specification.
• Even every loop needs its own specification.

7



Proof Must Be Modular Too
• A verification proof is usually very complex, 

needing lemmas written by hand.
• Typically written and stored along with the specification.

• Engineering proofs is a highly specialized skill:
• Hint: harder than coding → More $$$
• Proof must be updated 

• every time program or specification changes!

• Usually too expensive unless safety critical and
mandated by regulation.

8



Verification Doesn’t Prove Presence of Bugs
• Verification fails if
• Missing lemma for unit behavior, or
• Cannot verify loop invariant, or
• Functional specification missing a piece, or
• Run out of time trying to construct proof, or
• Specification is wrong.

• Constructing the proof can easily take as long as 
constructing the software, if not much more.
• Just because there is no proof does not mean the 

software has a fault.

9



10

0%

25%

50%

75%

100%

0% 25% 50% 75% 100%

Bu
gs

 fo
un

d

Reports indicating bugs

Bug Finding
Perfect

Testing

Verification

Bug Finders
Partial

Verification
Optional

Type
Systems

Linters



Bug Detection

11

False 
Positive

True 
Positive

True 
Negative

False 
Negative

We correctly
detect a bug.

We correctly
find no problem.

We miss a bug
in the system.

We generate a
false alarm.

Bug is presentBug is absent

Report

No Report



Static Program Analysis
• Bug finders and partial verification use static 

program analysis
• Reads in the program (just like a compiler);
• Analyze to determine properties:

• E.g., are all open resources eventually closed?
• ”static” means ”without running the program”.

• All non-trivial properties are undecidable
• Approximations are always necessary: make a choice

• E.g., miss some closes of open resources, or
• Miss some open resources not being closed.

12



Compromises with Static Analysis
• Getting precise results may take time:
• Many algorithms are exponential in precision measures.

• Getting precise results may require whole program:
• If parts of the program loaded at runtime:

• Analysis results may be very imprecise, or (worse)
• Incorrect, if they assume the whole program is available.

• Getting precise results may require intervention:
• Code may need to be annotated with information:

• E.g., this method may return an open resource.

13



Effects of Analysis Imprecision
FALSE NEGATIVES
• The static analysis misses 

something ”bad” in program:
• Bug not found.

• Can give a false sense of 
security.
• Can be reduced, but at the cost 

of false positives!

FALSE POSITIVES
• The static analysis reports a 

problem that doesn’t exist:
• There is no bug.

• Real bugs can be swamped by a 
flood of spurious reports.
• Programmer time is wasted 

chasing down false leads.

14



Google defined “Effective False Positive”
• A report from static analysis is effectively false,
• If it is ignored by developers;
• Whether or not it represents a true bug.

• Even if the report is technically correct
• It may refer to something considered unimportant:

• E.g., who cares if all the files aren’t closed, if the program is 
about to exit anyway.

• E.g., yes, there is a race condition between two logging 
statements, but that’s not important.

• Even if the report is technically wrong
• Developers may see potential problem, and fix.

15



Criteria For Automated Program Analysis
• Efficient and Easy
• Should not require whole program or annotations.

• Rarely spurious
• No more than 10% effectively false positive.

• Actionable
• Should point out things easy to fix.

• Effective
• Problems should be perceived as important.

16

Source: Software Engineering at Google, Chapter 20

Automatically applied
during Code Review.

https://learning.oreilly.com/library/view/software-engineering-at/9781492082781/ch20.html


Review: Learning Objectives for this Lesson
• You should now be able to:
• List challenges preventing full verification;
• Define false/true negatives/positives;
• Variously describe the effects of false positives and 

negatives;
• Explain when to integrate static analysis into builds.

17



Next steps...
• In our next lesson, we'll talk about Code Smells and 

Refactoring.

18


