
CS 4350: Fundamentals of Software Engineering
CS 5500: Foundations of Software Engineering

Lesson 8.2 Code Smells and Refactoring

Jon Bell, John Boyland, Mitch Wand
Khoury College of Computer Sciences

1

© 2021 Jonathan Bell, John Boyland and Mitch Wand. Released
under the CC BY-SA license

https://creativecommons.org/licenses/by-sa/4.0/

Outline of this lesson
1. Some common code “smells” (anti-patterns).
2. “Refactoring”: restructuring of code to improve

structure.
3. “Technical Debt”: generalization covering all

internal problems in a code-base.

2

Learning Objectives for this Lesson
• By the end of this lesson, you should be able to:
• Review several classes of code smells;
• Describe several kinds of refactoring;
• Identify the “technical debt” metaphor;
• Indicate when and where technical debt is appropriate

to accrue versus retire.

3

“Code Smells” are Anti-Patterns
• Cases of poor code:
• Likely to harbor faults;
• Difficult to use;
• Expensive to maintain.

• Common and Known:
• Each code smell has a name,
• … and a recommended fix.

• Example catalog:

4

https://refactoring.guru/refactoring/smells (figure courtesy of Refactoring Guru)

https://refactoring.guru/refactoring/smells

Code Smell Example (1 of 3)
• DATA CLASS

• A class has public properties (or
public getters and setters) and
few if any methods.
• How to fix:
• Determine what is being done

with class properties;
• Make some properties immutable;
• Define methods to perform tasks;
• Reduce getters/setters.

5

class Product {
private _id : string;
private _desc : string;
private _weight : number;

public get id() { return this._id; }
public set id(newID) {
this._id = newID;

}
public get desc() {
return this._desc;

}
// set desc
// get weight, set weight

}

Code Smell Example (2 of 3)
• DUPLICATED CODE

• The same (or very similar code)
occurs more than once.
• Multiplies maintenance work.

• How to Fix:
• Extract the common code in a

method;
• Use that method where code was.

6

if (this.width > lineSize) {
warn(‘at beginning, too big’);
this.width -= OVERFULL;

}

// more code

if (this.width > lineSize) {
warn(‘before return, too big’);
this.width -= OVERFULL;

}

Code Smell Example (3 of 3)
• TOOMANYPARAMETERS

• A method has a long list of
parameters; difficult for clients
to keep order and number
straight.
• How to Fix:
• Package up groups of related

parameters in objects, or
• Separate method into parts with

fewer arguments.

7

setUpPage
(USLetter.width,
USLetter.height,
recipe.getTitle(),
recipe.getContents(),
defaultFont,
2, /* number of columns
true, /* number pages? */
false, /* balance? */
1.4, /* PDF level */
outputFile);

Refactoring is Code Restructuring
• Code is reorganized:
• No (executable) code is added or removed;
• Code’s behavior is preserved;

• (not for fixing bugs!)
• Change is reversible;

• Metaphor: topology-preserving transformations:

8

Refactoring Can Improve Code
• Refactoring can remove “smells”:
• Bring together similar responsibilities;
• Separate disjoint responsibilities.

• Refactoring can improve code flexibility:
• It can add generality/abstraction;
• This prepares for changes to come later.

• Refactoring can break code, if done wrong:
• IDEs provide (usually) safe refactorings;
• Use regression tests to double-check.

9

Refactoring Example (1 of 3)
• EXTRACT LOCAL

• Pull an expression out into a
named local variable.

• (In this case, preparing for next
step so that duplicates can
become identical.)

10

if (this.width > lineSize) {
warn(‘at begin, too big’);
this.width -= OVERFULL;

}

if (this.width > lineSize) {
warn();
this.width -= OVERFULL;

}

‘at begin, too big’

const msg = ;

msg

Refactoring Example (2 of 3)
• EXTRACT METHOD

• Pull out code with locals
becoming formal parameters.

11

const msg = ‘at begin, too big’;
if (this.width > lineSize) {
warn(msg);
this.width -= OVERFULL;

}

const msg = ‘at begin, too big’;

checkWidth(lineSize:number,
msg:string) {

}

this.checkWidth(lineSize, msg);if (this.width > lineSize) {
warn(msg);
this.width -= OVERFULL;

}

Refactoring Example (3 of 3)
• INLINE LOCAL

• Replace name with value.
• Inverse of EXTRACT LOCAL.

12

const msg = ‘at begin, too big’;
this.checkWidth(lineSize, msg); this.checkWidth(lineSize,

const msg = ;‘at begin, too big’
msg);

To avoid hard-coding,
the next task would be to
EXTRACT CONSTANT.

Other Refactorings
• EXTRACT INTERFACE / EXTRACT ABSTRACT CLASS

• INTRODUCE PARAMETER
• Take out special case from function into new argument.

• MAKE STATIC / MAKE INSTANCE

• MOVE METHOD (to new class)
• […]

13

See “Additional Readings”
on course website

for this week.

Technical Debt is Sum of Internal
Problems in Project Codebase
• Internal because they don’t

show as user-visible failures.
• Examples:
• Code Smells;
• Missing tests;
• Missing documentation;
• Dependency on old versions of

third-party systems;
• Inefficient and/or non-scalable

algorithms.

14

Not just code!

Technical Debt Exacts Interest
During Maintenance (Usually)
Example of Debt
• Code Smells;
• Missing tests;
• Missing documentation;
• Dependency on old versions of

third-party systems;
• Inefficient and/or non-scalable

algorithms.

Example of Cost
• “Smelly” code is less flexible;
• Need to revert breaking change;
• Can’t figure out how to use;
• May have take over

maintenance of old system;
• Lose potential customers.

15

Good Reasons to Go Into Technical Debt
• Prototyping:
• If code will be discarded, or drastically rewritten, don’t

waste time perfecting it.

• Getting a product out the door:
• Time is often crucial in a competitive environment.

• Fixing a critical failure:
• People are waiting.

• Maybe a simple algorithm is good enough:
• “Premature optimization is the root of all evil”

• Tony Hoare, Donald Knuth

16

Retire Technical Debt at Leisure
• Set aside time to pay off technical

debt:
• Google has (had?) “20%-time” for

tasks such as this.
• A new initiative can take on some

technical debt:
• Refactoring at the start of a project.

• Don’t keep on putting off!
• When a crisis hits, it’s too late;
• Hasty fixes to unmaintainable code

multiplies problems;
• Eventually mounting technical debt

can bury the team.

17

Review: Learning Objectives for this Lesson
• You should now be able to:
• Review several classes of code smells;
• Describe several kinds of refactoring;
• Identify the “technical debt” metaphor;
• Indicate when and where technical debt is appropriate

to accrue versus retire.

18

Next Week...
• In our next lesson, we’ll talk about engineering for

security.

19

