
Jonathan Bell, John Boyland, Mitch Wand
Khoury College of Computer Sciences

CS 4530
Software Engineering
Lecture 1 - Course Overview + Introductions

Today’s Agenda

Introductions

Course Mechanics

Discussion: Code style

Code style activity

Zoom Mechanics

• Recording: TBD

• If you feel comfortable having your camera on, please do so! If not: a photo?

• I can see the zoom chat while lecturing, slack while you’re in breakout rooms

• If you have a question or comment, please either:

• “Raise hand” - I will call on you

• Write “Q: <my question>” in chat - I will answer 
 your question, and might mention your name and ask you 
 a follow-up to make sure your question is addressed

• Write “SQ: <my question>” in chat - I will answer 
 your question, and not mention your name or expect you to 
 respond verbally

Introductions

• Me

• Research: Software Engineering, Program
Analysis

• Open source startup: Clowdr (Virtual
conferences - React/NodeJS/Vonage/Hasura/
Postgres)

• Reminder of coordinated sections with:

• Professor John Boyland

• Professor Mitchell Wand

https://clowdr.org

Teaching Assistants

Joseph Burns

Guneet KaurEiki Kan Satyajit Gokhale

Michael Davinroy Yuting Gan

Ben Schultze

Sagar Madhu Ayi

Office hours: 5 days a week

Monday: Sagar Madhu Ayi @ 1:30-3:30PM, Yuting Gan @ 4:30PM - 6:30PM

Tuesday: Benjamin Schultze @ 3:00PM - 5:00PM

Wednesday: Joseph Burns @ Noon-2:00pm, Eiki Kan @ 4:35PM - 6:35PM

Thursday: Michael Davinroy @ 1:00PM - 2:00PM

Friday: Michael Davinroy @ 9:00AM - 10:00AM, Guneet Kaur @ 11:00AM- 1:00PM

Introductions [Poll]
https://pollev.com/jbell

https://pollev.com/jbell

Course Mechanics

• See syllabus for all of the usual stuff

• Our goal is to provide a productive learning environment to both remote and on-the-
ground students

• Lecture videos posted at start of week: watch videos before coming to class

• During scheduled class time: discussion, activities. If you come in person, bring
laptop and headphones

• Note: 10% of course grade is based on your participation in these activities

• Please contact me if you are regularly not able to attend class due to extreme
difference in time zone

Software Engineering as a Discipline c. 1969
[Software Engineering as a Class]
•Software was very inefficient
•Software was of low quality
•Software often did not meet requirements
•Projects were unmanageable and code difficult to maintain
•Software was never delivered

A call to action:
We must study

how to build
software

Software Engineering as a Discipline
[Software Engineering as a Class]

The major cause of the software crisis is that
the machines have become several orders of
magnitude more powerful! To put it quite
bluntly: as long as there were no machines,
programming was no problem at all; when we
had a few weak computers, programming
became a mild problem, and now we have
gigantic computers, programming has
become an equally gigantic problem.

- Edsger W. Dijkstra, in his 1972 Turing Award acceptance speech

https://www.cs.utexas.edu/~EWD/transcriptions/EWD03xx/EWD340.html

Increase in computational capacity over time
Increase over software complexity?

“Implications of Historical Trends in the Electrical Efficiency of Computing” Koomey et al, IEEE Annals of History of Computing 2011

Software Engineering is about People
Disclaimer: Software Engineering is full of opinions

“Any fool can write code that a
computer can understand.
Good programmers write code
that humans can understand”

 - Martin Fowler

Why be pedantic about software design?
Software Engineering is about People

1. function calculateFoo(x: number, y: number, increment: boolean): number {
2. if (increment)
3. x++;
4. x *= 2;
5. x += y;
6. return x;
7. }
8.

calculateFoo(3, 5, true) = ?  
calculateFoo(3, 5, false) = ?

13
8 11

Why be pedantic about software design?
What’s wrong with this code?

1.function anotherExample(value: number): void {
2. switch (value) {
3. case 1:
4. doSomething();
5. case 2:
6. doSomethingElse();
7. break;
8. default:
9. doDefaultThing();
10. }
11.}

Software Engineering is about People
Software design is about people

HashSet<String> mySet = new HashSet<String>();
mySet.add("a");
mySet.add("b");
Iterator<String> iter = mySet.iterator();
System.out.println(iter.next()); //What is printed?

This class implements the Set interface, backed by a hash table (actually a HashMap instance). It makes no
guarantees as to the iteration order of the set; in particular, it does not guarantee that the order will remain
constant over time. This class permits the null element.

-JavaDoc for HashSet

1,000,000 trials: “a” is printed every time

BUT NOT GUARANTEED

https://docs.oracle.com/javase/7/docs/api/java/util/HashSet.html

Software Engineering is about People
Software is about People

class BookTest {
 @Test
 public void testGetStringRepresentation() {
 Book b = new Book("book", "name");

assertEquals("{\"title\":\"book\",\"author\":\"name\"}",
 b.getStringRepresentation());
 }
}

What could go wrong here?

What if Book is just a HashMap?

{
 "title": "book",
 “author": "name"
}

{
 “author": “name",
 "title": "book"
}

Both are possible :(

Whose fault is this?

What’s Software Engineering’s Answer?
Hyrum’s Law

“With a sufficient number of users of an API,
it does not matter what you promise in the contract:
all observable behaviors of your system
will be depended on by somebody.”

-Hyrum Wright

For more: see “Software Engineering at Google” Ch 1

What’s Software Engineering’s Answer?
Hyrum’s Law

“With a sufficient number of users of an API,
it does not matter what you promise in the contract:
all observable behaviors of your system
will be depended on by somebody.”

-Hyrum Wright

XKCD #1172

https://xkcd.com/1172/

What’s Software Engineering’s Answer?
Automatically detecting this!

https://github.com/TestingResearchIllinois/NonDex

https://github.com/TestingResearchIllinois/NonDex

Why be pedantic about software design?
Software Engineering is about People

1. function calculateFoo(x: number, y: number, increment: boolean): number {
2. if (increment)
3. x++;
4. x *= 2;
5. x += y;
6. return x;
7. }
8.

calculateFoo(3, 5, true) = ?  
calculateFoo(3, 5, false) = ?

13
8 11

 2:3 error Expected { after 'if' condition curly
 3:5 error Expected no linebreak before this statement nonblock-statement-body-position
 3:5 error Unary operator '++' used no-plusplus
 3:5 error Assignment to function parameter 'x' no-param-reassign
 4:3 error Assignment to function parameter 'x' no-param-reassign
 5:3 error Assignment to function parameter 'x' no-param-reassign

Software engineering tools to the rescue!

Why be pedantic about software design?
What’s wrong with this code?

1.function anotherExample(value: number): void {
2. switch (value) {
3. case 1:
4. doSomething();
5. case 2:
6. doSomethingElse();
7. break;
8. default:
9. doDefaultThing();
10. }
11.}

 5:5 error Expected a 'break' statement before 'case' no-fallthrough

Our first Software Engineering Tool
Linters: your friend, your foe

https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.56.1841

Review: Design Principles

Five General Principles
1. Use Good Names
2. Design Your Data
3. One method/one job
4. Don't Repeat Yourself
5. Don't Hardcode Things That Are
Likely To Change

Five Principles for OO Programming
1. Make Your Interfaces Meaningful
2. Depend only on behaviors, not their implementation
3. Keep Things as Private as You Can
4. Favor Dynamic Dispatch Over Conditionals
5. Favor Interfaces Over Subclassing

Activity: Design Principles and Coding Style

• Right now: Review some of your previous coding projects. This could be a
homework, a term project, or something from outside of class, so long as it’s
something that you can share. Find one or two examples in your code where either:

• you used one of the principles and it was helpful

• you didn't use one of the principles and it would have helped if you'd used it.

• Be prepared to share your code and tell the class

• what the relevant principle was and

• how it either helped or would have helped.

Activity: Design Principles and Coding Style
Breakout groups

• In groups of 4, discuss the design and code style issues that you each found

• It’s not necessary that all 4 of you present your code to each other, most
important is to have a good discussion

• Post your findings in Slack in #section-bell (https://nusespring2021.slack.com)

• After 15 minutes, we’ll come back together and share some examples all
together

https://nusespring2021.slack.com

Homework 1 Preview
What we’re building towards…

