
Jonathan Bell, John Boyland, Mitch Wand
Khoury College of Computer Sciences

CS 4530
Software Engineering
Lecture 2 - Design Documentation: CRC + UML

Zoom Mechanics

• Recording: This meeting is being recorded

• If you feel comfortable having your camera on, please do so! If not: a photo?

• I can see the zoom chat while lecturing, slack while you’re in breakout rooms

• If you have a question or comment, please either:

• “Raise hand” - I will call on you

• Write “Q: <my question>” in chat - I will answer 
 your question, and might mention your name and ask you 
 a follow-up to make sure your question is addressed

• Write “SQ: <my question>” in chat - I will answer 
 your question, and not mention your name or expect you to 
 respond verbally

Today’s Agenda

HW1 Discussion

Documenting designs with CRC + UML diagrams

Activity: UML

Discussion: HW1

“The 10x Engineer”
AKA “The Rock-Star Engineer,” “The Ninja Developer”

Conceptual Design is Hard
There is “No Silver Bullet” for a 10x improvement

“The essence of a software entity is a construct of interlocking concepts:
data sets, relationships among data items, algorithms, and invocations of
functions. … I believe the hard part of building software to be the
specification, design, and testing of this conceptual construct, not the
labor of representing it and testing the fidelity of the representation.”

Fred Brooks, 1987

Collaboration: The 10x Team
A “Dream Team,” if you will…

• “Many eyes make all bugs
shallow” (ancient proverb)

• Avoid a single point of failure

The 10x Team, or the 1/10 Team?
Mythical Man-Month: “adding manpower to a late software project makes it later”

• Knowledge sharing needs to scale linearly (or sub linearly) with org growth:

• Mentorship

• Q&A

• Mailing lists

• Tech talks

• Documentation <— Our focus today

For more on knowledge sharing in teams, see SE@Google Ch 3

Design Documents
Why?

• At design time:

• Consider alternative solutions

• Identify flaws

• At implementation/debugging time:

• A handy reference

• Design documents include…

• Goals of design

• Implementation strategy

• Discussion of alternative designs and their strong and weak points

Design Diagrams - UML Sequence
Improving understanding and understandability

/**

 * A handler to process a player's request to join a room. The flow is:

 * 1. Client makes a RoomJoinRequest, this handler is executed

 * 2. Client uses the sessionToken returned by this handler to make a subscription to the room,

 * @see roomSubscriptionHandler for the code that handles that request.

 *

 * @param requestData an object representing the player's request

 */

export async function roomJoinHandler(requestData: RoomJoinRequest): Promise<RoomJoinResponse>

Join Room

Covey.Town
Frontend Twilio Video

Covey.Town
roomSubscription

Handler

Covey.Town
roomJoinHandler

userName, roomID

Tokens: coveyTown, Twilio

Subscribe to roomID using coveyTown Token

Connect to video room using Twilio Token

Updated room information: players and locations

Video streams from other players

Design Diagrams - UML Sequence
Improving understanding and understandability

Join Room

Covey.Town
Frontend Twilio Video

Covey.Town
roomSubscription

Handler

Covey.Town
roomJoinHandler

userName, roomID

Tokens: coveyTown, Twilio

Subscribe to roomID using coveyTown Token

Connect to video room using Twilio Token

Updated room information: players and locations

Video streams from other players

Draw a line for each
message, with an
arrowhead pointing to
the receiving class
instance

Draw a dotted line
for each return
value, with an
arrowhead pointing
back to the
originating class
instance

CRC Cards

• Each class is a thing, entity or object

• Each responsibility is some action the entity needs to
do

• Collaborators are other classes the entity interacts with,
communicates with, contains, knows about, or that
otherwise help it perform one or more responsibilities

• CRC focuses on the purpose of each entity rather than
its processes, data flows and data stores (procedural
design)

Example: Sensors

CRC Card for TemperatureSensor
Class Name: TemperatureSensor (interface)

State: none
Responsibilities Collaborators

establish interface for
thermometers in the system

RefrigeratorThermometer

 OvenThermometer
 etc.
 TemperatureMonitor

// temperatures are measured in Celsius

type Temperature = number

 
interface TemperatureSensor {

 // return the current temperature

 // at the sensor location

 getTemperature () : Temperature

}

CRC cards are supposed to be
informal, so don’t get hung up on
emulating the exact words or the
exact layout I've used here.

TemperatureMonitor (1)
class TemperatureMonitor {

 constructor(

 // the sensors

 private sensors: TemperatureSensor[],

 
 // map from sensor to its location

 private sensorLocationMap: SensorLocationMap,

 private maxTemp: Temperature,

 private minTemp: Temperature,

 private alarm: IAlarm,

) { }

 
 // sensor in range?

 private isSensorInRange (sensor:TemperatureSensor) : boolean {

 const temp: Temperature = sensor.getTemperature()

 return ((temp < this.minTemp) || (temp > this.maxTemp))

 }

Here's a slightly more elaborate
TemperatureMonitor

It monitors multiple sensors

And it knows where each sensor is

Better division into one method/one
job than our earlier version.

TemperatureMonitor (2)
 // if the any of the sensors is out of range, sound the alarm

 public checkSensors(sensor:TemperatureSensor): void {

 this.sensors.forEach(sensor => {

 if (!(this.isSensorInRange(sensor))) {

 this.soundAlarm(sensor)

 }

 })

 }

 private soundAlarm (sensor) {

 const location = this.sensorLocationMap.getLocation(sensor)

 this.alarm.soundAlarm(location)

 }

 
}

CRC Card for TemperatureMonitor

Class Name: TemperatureMonitor
State: sensors, maxTemp, minTemp, alarm

Responsibilities Collaborators
if any of the sensors is out of
range, tell the alarm to
sound at its location

TemperatureSensor

 SensorLocationMap
 IAlarm

CRC Cards: Where to start?
Building the cards

• Find the nouns: entities that “do” actions (classes)

• Find the verbs: what gets done, not how (responsibilities)

• Find the relationships

Class Name: TemperatureSensor (interface)

State: none
Responsibilities Collaborators

establish interface for
thermometers in the system

RefrigeratorThermometer

 OvenThermometer
 etc.
 TemperatureMonitor

CRC Cards: Putting them to use
Not just static objects!

Class Name: TemperatureSensor (interface)
State: none

Responsibilities Collaborators
establish interface for
thermometers in the
system

RefrigeratorThermom
eter

 OvenThermometer

 etc.

 TemperatureMonitor

Class Name: TemperatureMonitor

State: sensors, maxTemp, minTemp, alarm
Responsibilities Collaborators

if any of the sensors is out of
range, tell the alarm to sound at
its location

TemperatureSensor

 SensorLocationMap

 IAlarm

Class Name: Ialarm (interface)

State: none

Responsibilities Collaborators

Interface for classes
that will sound an alarm

TemperatureMoni
tor

 all
implementations
of IAlarm

Class Name: SensorLocationMap

State: Map from Sensors to their Location

Responsibilities Collaborators

Maintain the map from
Sensors to their Location

TemperatureMonitor

Class
Name:

FireAlarm

State: socket for communicating
with Fire Dept

Responsibilities Collaborators

when sounded, call
the FireDept

IFireDept

when FireDept
responds, turn off
alarm

UML Class Diagrams

• Graphically shows relationships between
entities

• Not necessarily a 1:1 correspondence to
code: good for domain modeling

• Example: reporting on compact disc sales

UML Class Diagrams

• Indicate relationships using different kind
of arrows:

• Generalization (is a)

• Association (has a)

Generalization

One-way

association

Two-way

association

UML Class Diagrams: Cardinality

Any given instructor teaches 1 course.  
Any given course is associated with one instructor.

Instructor Course

1 1

teaches ►

Any given instructor teaches 1 or more courses.  
Any given course is associated with one instructor.

Instructor Course

1 1..*

teaches ►

Any given instructor teaches at least 1 and up to 10 courses.  
Any given course is associated with one instructor.

Instructor Course

1 1..10

teaches ►

If no cardinality is specified, it defaults to 1.Instructor Course

1..*

teaches ►

UML Class Diagrams: Generalization

• more generic as you move up

• more specific as you move down

• more specific inherits attributes  
and operations from the more general

- may specialize attributes and operations

Northeastern Person

Employee Student

Faculty

Staff

Graduate

Undergraduate

UML Class Diagrams: Aggregation

• Aggregation is an association that means a
“whole/part” or “containment” relationship.

• The distinction between association and
aggregation is not always clear.

• Don't stress about this: If in doubt, notate
the relationship as a simple association.

UML Activity: TVM
Ticket Vending Machines

• TVMs accept cash and credit cards as payments to sell fares,
which are loaded onto passes

• TVMs sell two kinds of fares:

• Time-based fares

• Value-based fares

• Fares can be loaded onto passes, passes can be:

• CharlieCard

• CharlieTicket

• Your task: Create a UML class diagram that represents:

• The TVM itself; the two kinds of fares; the two kinds of passes

This work is licensed under a Creative Commons
Attribution-ShareAlike license

• This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-sa/4.0/

• You are free to:

• Share — copy and redistribute the material in any medium or format

• Adapt — remix, transform, and build upon the material

• for any purpose, even commercially.

• Under the following terms:

• Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made.

You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your
use.

• ShareAlike — If you remix, transform, or build upon the material, you must distribute your contributions under
the same license as the original.

• No additional restrictions — You may not apply legal terms or technological measures that legally restrict others
from doing anything the license permits.

http://creativecommons.org/licenses/by-sa/4.0/

