
Jonathan Bell, John Boyland, Mitch Wand
Khoury College of Computer Sciences

CS 4530
Software Engineering
Lecture 3 - Design Patterns

Zoom Mechanics

• Recording: This meeting is being recorded

• If you feel comfortable having your camera on, please do so! If not: a photo?

• I can see the zoom chat while lecturing, slack while you’re in breakout rooms

• If you have a question or comment, please either:

• “Raise hand” - I will call on you

• Write “Q: <my question>” in chat - I will answer 
 your question, and might mention your name and ask you 
 a follow-up to make sure your question is addressed

• Write “SQ: <my question>” in chat - I will answer 
 your question, and not mention your name or expect you to 
 respond verbally

Today’s Agenda

Administrative:

HW1 Discussion, due next Friday

Design patterns discussion

Activity: observer pattern

Reflection: What's a software design
problem you've solved from an idea
you learned from someone else?

Discuss in small groups for 15 minutes, then at least 3-5 people will share their experiences with the whole class

Review: Design Patterns
A design conversation

Q: How should we build a stack of drawers?

A: Well, I think we should make the joint by
cutting straight down into the wood, and
then cut back up 45 degrees, and then
going straight back down, and then back
up the other way 45 degrees, and then
going straight back down, and then…

“Design Patterns Explained”, Shalloway and Trott, Addison-Wesley, 2005

Review: Design Patterns
Asking the wrong questions

Carpenter: Should we use a dovetail or miter joint?

“Design Patterns Explained”, Shalloway and Trott, Addison-Wesley, 2005

Other carpenter: Use a miter, it’s: lighter and inconspicuous. A
dovetail is a more complex, expensive joint that will be
impervious to temperature and humidity, and it will look
better. But, nobody will see the joint in the drawer, and it
won’t be in a situation with changing heat and humidity.

Dovetail Joint Miter Joint

More of Christopher Alexander’s Patterns
No. 82: Office Connections

“If two parts of an office are too far apart, people will
not move between them as often as they need to,
and if they are more than one floor apart, there will
be almost no communication between the two”

“A Pattern Language: Towns, Buildings, Construction,” C Alexander et al. pg 408-409

Why Design Patterns?
The OG meme (1975)

More of Christopher Alexander’s Patterns
Domain-Specific Patterns

9. Living Learning Circle:
Students who want to live closely related to the university want their housing integrated with the
university; yet most on-campus housing provided today is zoned off from academic departments.
Therefore: Provide housing for 25 per cent of the student population within the 3000 for inner
university diameter. Do not zone this housing off from academic departments…”

“The Oregon Experiment,” C Alexander et al. pg 114

More (Software) Design Patterns
Just like Alexander expected more patterns to be “discovered” in architecture, same happens in code…

https://java-design-patterns.com/patterns/ : 109+ patterns

Patterns might be local to:
A language

A framework

A project

https://java-design-patterns.com/patterns/

Design Patterns
Discusison: Is it about vocabulary, or is it about training?

“None of the design patterns in this book describes new or unproven
designs. We have included only designs that have been applied
more than once in different systems. Most of these designs have
never been documented before. They are either part of the folklore
of the object-oriented community or are elements of some
successful object-oriented systems—neither of which is easy for
novice designers to learn from.”

Review: Observer Pattern
Aka Publish/Subscribe

Observer
• defines an interface for objects that

should be notified of changes

ConcreteObserver

• maintains reference to an object

• stores state that should stay

consistent with subject’s

• implements the Observer interface to

keep state consistent with the
subject’s

Subject
• provides an interface for attaching/

detaching observers

ConcreteSubject

• stores state of interest to observers

• sends a notification to its observers

when state changes

• The object being observed (the "subject") keeps a list of the people who need to be notified when something changes.

•When a new object wants to be notified when the subject changes, it registers with ("subscribes to") with the subject

Review: Observer Pattern

export interface IPublishingClock { 
 // reset the tick counter

 reset(): void

 // increment the tick counter

 tick(): void

 // subscribe a new observer

 subscribe(obs:ClockObserver) : void

}

 
export interface ClockObserver { 
 // action to take when clock ticks

 onTick(time:number):void

 
 // action to take when the clock resets

 onReset():void

 
}

class Clock implements IPublishingClock {

 // clock functionality

 private clockTime = 0

 public tick () {this.clockTime++; this.publishTickEvent()}

 public reset() {this.clockTime=0; this.publishResetEvent()}

 
 private observers : ClockObserver[]

 
 // register responds with the current time, so the observer

 // will be initialized

 public subscribe(obs:ClockObserver): void {

 this.observers.push(obs);

 obs.onTick(this.clockTime)

 }

 private publishTickEvent() {

 this.observers.forEach(obs => {obs.onTick(this.clockTime)})

 }

 private publishResetEvent() {

 this.observers.forEach(obs => {obs.onReset()})

 }

}

export default class StatisticsDisplay {

 private _maxTemp = 0;

 private _minTemp = 0;

 private _tempSum = 0;

 private _numReadings = 0;

 displayStatistics(currentData: WeatherData): void {

 this._tempSum += currentData.temperature;

 this._numReadings += 1;

 if (this._maxTemp < currentData.temperature) {

 this._maxTemp = currentData.temperature;

 }

 if (this._minTemp > currentData.temperature) {

 this._minTemp = currentData.temperature;

 }

 // eslint-disable-next-line

 console.log('Avg/max/min temperature = %f/%i/%i', this._tempSum / this._numReadings, this._maxTemp, this._minTemp);

 }

}

Programming Activity
Weather Station

• We have prepared some code for a weather station, with a class WeatherData
that stores the current temperature, pressure and humidity, and several
display classes that format the data, e.g.:

Sample output from running all of the displays: 
Avg/max/min temperature = 80/80/0

Forecast: Improving weather on the way!

Current conditions: 80F degrees and 65% humidity

Heat Index: 82.95535063710001

Programming Activity
Observer Pattern

public setMeasurements(temperature: number, humidity: number, pressure: number): void {

 this._temperature = temperature;

 this._humidity = humidity;

 this._pressure = pressure;

 this.measurementsChanged();

}

private measurementsChanged() {

 this._statisticsDisplay.displayStatistics(this);

 this._forecastDisplay.displayForecast(this);

 CurrentConditionsDisplay.displayCurrentConditions(this);

 HeatIndexDisplay.displayHeatIndex(this);

}

File: WeatherData.ts

Class: WeatherData
State: current temperature, humidity, pressure

Responsibilities: 
Keep track of current
weather

Push changes to displays

Collaborators: 
StatisticsDisplay 
ForecastDisplay 
CurrentConditionsDisplay 
HeatIndexDisplay

CRC card for the current class:

Class: WeatherData
State: current temperature, humidity, pressure

Responsibilities: 
Keep track of current
weather

Push changes to displays

Collaborators: 
WeatherDataObserver

CRC card after your changes:

Your task: rewrite these classes to follow the observer pattern

Activity is online at:

https://neu-se.github.io/CS4530-CS5500-Spring-2021/Activities/Activity2.2_Observer/

https://neu-se.github.io/CS4530-CS5500-Spring-2021/Activities/Activity2.2_Observer/

This work is licensed under a Creative Commons
Attribution-ShareAlike license

• This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-sa/4.0/

• You are free to:

• Share — copy and redistribute the material in any medium or format

• Adapt — remix, transform, and build upon the material

• for any purpose, even commercially.

• Under the following terms:

• Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made.

You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your
use.

• ShareAlike — If you remix, transform, or build upon the material, you must distribute your contributions under
the same license as the original.

• No additional restrictions — You may not apply legal terms or technological measures that legally restrict others
from doing anything the license permits.

http://creativecommons.org/licenses/by-sa/4.0/

