
●

○

●

●

●

●

1.

CS4530 Spring 2021 Review Discussion
Q: Has programming gotten better/easier over time? Or has
programming become a bigger problem as programs/computers
get bigger?

Programming has become easier to learn - more resources
available, setup has gotten easier

Deployment is useful, too!
Easier to collaborate now - Processes have improved - agile,
lean, xp - software as a service for managing teams, etc.
Downside - our EXPECTATIONS of programs have grown too

Q: What is difference between programming and software
engineering?

SE is about programming at scale - lots of developers, lots of
revisions of code (maintain over time)

“From there it is only a small step to measuring ‘programmer
productivity’ in terms of ‘number of lines of code produced per
month.’ This is a very costly measuring unit because it
encourages the writing of insipid code, but today I am less
interested in how foolish a unit it is from even a pure business
point of view. My point today is that, if we wish to count lines of
code, we should not regard them as ‘lines produced’ but as
‘lines spent’: the current conventional wisdom is so foolish as to
book that count on the wrong side of the ledger.”

Technical debt - everything that we produce, we have to
maintain

Sample question discussion
Q: Rest design question.

HTTP Verb: POST
REST Path: /hotels
Request data (www-url-encoded):

{
 ownerID: string,

2.

3.

4.

5.

 hotelName: string,
 city: string,
 state: string,
 rooms: {roomID: string, dailyRate: number}[]
 }
Response data (JSON): {hotelID: string, status: string}

HTTP Verb: GET
REST path: /hotels
or: /cities/:cityID/hotels <— This prioritizes “cities” as the
resource, vs “hotels” which prioritizes “hotels” as the
resource
Request data: Query string ?
city=CityName&state=StateName
Also OK, a variant of: /hotels/state/:stateName/city/:cityName
(but we prefer the query string in practice)
Response: {hotelID: string, hotelName: string}
HTTP Verb: GET
REST path:
 /rooms
 /hotels/:hotelID/rooms (either is OK! But this locks you into
querying only for rooms within a single hotel)
Request data: Query string ?
hotelID=someID&date=someDate
Response: {roomID: string, dailyRate: number}[]
HTTP Verb: POST
REST path: /reservations
Request data: {userID: string, roomID: string, date: Date}
Response: {status: string, reservationNumber: number}
HTTP Verb: DELETE
REST path: /reservations
Request data: JSON body - {userID: string,
reservationNumber: number}
Response: {status: string}

Asynchronous Programming

1.
2.
3.
4.

1.

2.

 someRemoteAPICall("callA", () => {
 console.log("A");
 someRemoteAPICall("callB", () => {
 console.log("B");
 })
})
 someRemoteAPICall("callC", () => {
 console.log("C");
 someRemoteAPICall("callD", () => {
 console.log("D");
 })
});

Could “B” print before “A” - NO
Could “C” print before “A” - YES
Could “D” print before “A” - YES
D (Because “B” can’t print before “A”)

Testing with mocks
Mocks - Replace a function with a canned value
Fakes - A mock that has real logic implemented [thin/grey line
between this and mocks - don’t worry]
Spies - Call the actual function, but record that it was called [in
some testing frameworks, all spies are mocks, but this isn’t
always the case]
[No need to distinguish between the 3 above classes for exam]

Mock isAuthenticated, doLogin, doLogout. Reduce flakiness
by making tests hermetic: all logic and data for the test is self
contained (doesn’t rely on outside authenticate service, or
network)
Given: An application state where a user is logged in
When: A user clicks on the logout button
Then: The doLogout should be called, and the doLogin
function should not be called

Distributed systems

1.

2.
3.

4.

1.

2.

3.

4.

Tolerate all of them (?). Tolerate the different kinds of errors
users might create, and also tolerate different kinds of
network failures (partitions vs total outages)
Retry operations when they fail.
Everyone should see the same thing. There can be
inconsistency when two players’ view of the world diverges.
For example, there could be a lag in watching someone move
around the screen. Alternatively, some players might be
visible only to some other players, but not to all.
Availability means that the system is functioning - unavailable
if the server crashes

Inclusive Development
Limited groups make it easy to have blind spots (especially in
image recognition, voice recognition applications) - think of
only a limited set of experiences, leading to a limited set of
solutions; cultural diversity brings more creativity; can
empathize better with users and hopefully make better
software/products
GenderMag encourages a persona-based design process,
with a diverse group of personas that represent different
technology learning and usage styles
 Blind-> screen readers, deaf -> closed captioning, non-
native English users -> iconography, translations
 Examples: Iconography (good UX design generally), Alt-text
(screen readers + low bandwidth + broken photo links),
closed captions, GenderMag inclusivity example on MS
Academic

Q: One of the goals in testing module was to give examples of
non-deterministic testing - is this a good thing, or a bad thing?
A: Have a mix of both. Lots of small unit tests (which are
deterministic), some integration/end-to-end tests (which might
be non-determinsitic).

