
CS 4530: Fundamentals of Software Engineering
Module 7: React

Adeel Bhutta and Mitch Wand

Khoury College of Computer Sciences

1

© 2023 Released under the CC BY-SA license

https://creativecommons.org/licenses/by-sa/4.0/

Learning Objectives for this Lesson

• By the end of this lesson, you should be able to:
• Understand how the React framework binds data (and

changes to it) to a UI

• Create simple React components that use state and
properties

2

HTML: The Markup Language of the
Web
• Language for describing structure

of a document

• Denotes hierarchy of elements

• What might be elements in this
document?

3

Rich, interactive web apps

• Infinite scrolling of cats

4

Typical properties of web app UIs

• Each widget has both visual presentation & logic

• Some widgets occur more than once
• e.g., comment/like widgets

• Changes to data should cause changes to widget
• e.g., new images, new comments should show up in real

time

• Widgets have hierarchical structure

• Action on a widget may affect other widgets
• e.g., clicking on 'like' button executes some logic related

to the widget itself,
• It may also affect the widget the contains the ‘like’

button

5

Components represent
widgets in object-like style

• Organize related logic and presentation
into a single unit
• Includes necessary state and the logic for

updating this state
• Includes presentation for rendering this state

into HTML

• Synchronizes state and visual presentation
• Whenever state changes, HTML should be

rendered again

6

Components
Example: Like button component

• What does the button keep track of?
• Is it liked or not
• What post this is associated with

• What logic does the button have?
• When changing like status, send update to

server

• How does the button look?
• Filled in if liked, hollow if not

7

Server side vs. client side

• Where should template/component be instantiated?

• Server-side frameworks: Template instantiated on server
• Examples: JSP, ColdFusion, PHP, ASP.NET
• Logic executes on server, generating HTML that is served to

browser

• Front-end framework: Template runs in web browser
• Examples: React, Angular, Meteor, Ember, Aurelia, …
• Server passes template to browser; browser generates HTML

on demand

8

Expressing Logic

• Templates/components require combining logic
with HTML
• Conditionals - only display presentation if some

expression is true
• Loops - repeat this template once for every item in

collection

• How should this be expressed?
• Embed code in HTML (ColdFusion, JSP, Angular)
• Embed HTML in code (React)

9

Embedding Code in HTML
• Template takes the form of an

HTML file, with extensions
• Popular for server-side frameworks

• Uses another language (e.g., Java,
C) or custom language to express
logic

• Found in frameworks such as PHP,
Angular, ColdFusion, ASP (NOT
React)

• Can’t type check anything

10

Embedding HTML in TypeScript
Aka JSX or TSX
• How do you embed HTML in

TypeScript and get syntax checking?

• Idea: extend the language: JSX, TSX
• JavaScript (or TypeScript) language,

with additional feature that
expressions may be HTML

• It’s a new language
• Browsers do not natively run JSX (or

TypeScript)
• We use build tools that compile

everything into JavaScript

11

JSX/TSX Embeds HTML in TypeScript

• Example:

• HTML embedded in TypeScript
• HTML can be used as an expression
• HTML is checked for correct syntax

• Can use { expr } to evaluate an expression and return a
value
• e.g., { 5 + 2 }, { foo() }

• To wrap on multiple lines, wrap the TSX/JSX in
parentheses (…)

• Value of expression is a piece of HTML

return <div>Hello {someVariable}</div>;

12

React is a Framework for Components

• Created by Facebook

• Powerful abstractions for describing UI components

• Official documentation & tutorials: https://reactjs.org/

• Components are constructed in the browser (“front-end”)

• Key concepts:
• Embed HTML in TypeScript
• Track application “state”
• Automatically and efficiently re-render page in browser based on

changes to state
• But: some implementations of React allow components to be pre-

constructed in the server.

13

https://reactjs.org/

React makes it easy to build rich, interactive web
apps (perhaps with infinite scrolling of cats!)

Built with React

Plus, AirBNB, Uber, Pinterest,
Netflix, Twitter and 8855 more

14

Creating React applications

• A React application is a complicated beast.

• There are several popular frameworks for building
such an application

• The one we will use is called next.js .

• It is a full-featured framework; we will use only a
small fraction of its features.

15

Creating New React Applications

• React applications must be compiled into a format that
browsers can understand

• create-next-app is a set of scripts to automate this
process.

• npx create-next-app starts an interactive session that
creates a fully-featured TS package

• Probably you will never do this in this course– the “fully-
featured TS package” is a big beast.

• Better plan is to modify one of the packages that we supply
you.

16

Here’s a sample interaction…

17

React Has a Rich Component Library

18

Installing Chakra for next.js:

• Just say:

npm i -–save @chakra-ui/react @chakra-ui/next-js \

@emotion/react @emotion/styled framer-motion

19

import * as React from 'react';
import {
 Heading,
 VStack
} from '@chakra-ui/react';

function HelloWorldComponent() {
 return (
 <VStack>
 <Heading>Hello World</Heading>
 </VStack>
)
}

export default function App() {
 return (<HelloWorldComponent />)
}

Hello World in React

“Return the following HTML whenever the
component is rendered”

The HTML is dynamically
generated by the library.

app/Apps/HelloWorld.tsx

20

Next.js renders whatever is in app/page.tsx

import App from './Apps/HelloWorld'
// import App from './Apps/HelloWorldDave'
// import App from './Apps/App1';

export default function HomePage() {
 return (
 <ChakraProvider>
 <App />
 </ChakraProvider>
)
}

app/page.tsx

21

You may see “Class” components, too – but
we won’t write them

Hello World, Circa 2016

(Before the “Class” keyword!)

Hello World, Circa 2020

(Defined as a Class)

Hello World, Circa 2022

(Defined as a function)

export function HelloMessage(){

 return <div>Hello, World!</div>

}

class HelloMessage extends React.Component {

 render(){

 return <div>Hello, World!</div>

 }

}

var HelloMessage = React.createClass({

 render: function() {

 return <div>Hello, World!</div>

 }

})

22

React Components Can Receive Properties.
• Properties are passed in an argument to the component

• Properties are specified as attributes when the
component is instantiated

• Properties can not be changed by the component

export default function App() {
 return (<VStack>
 <HelloWorldWithName name='Avery'/>
 <HelloWorldWithName name='Dave'/>
 </VStack>
)
}

23

Component State is Data That Changes

• State is data that, when changed, should
trigger UI update

• State is created by useState.

• The state is accessed through state
variables in the component.

• The first variable is the accessor, the
second is the setter.

• The only way to change the value of a
state variable is with the setter

import { useState } from 'react';
function Foo() {
const [count, setCount] = useState(0)
 ….
}

You could choose any names for the variable and its
setter; for this class, please follow the naming
convention (goodVariableNlame, setGoodVariablename)
that we’e used here.

24

Example

export default function App() {

 const [count, setCount] = useState(0)

 function handleClick() { setCount(count + 1) }

 return (
 <VStack>
 <Box> count = {count} </Box>
 <Button onClick={handleClick} >
 Increment Count!
 </Button>
 </VStack>
)

}

app/Apps/SimplestState.tsx

(Some styling has been
removed to reduce clutter
on this screen.}

25

Setters are asynchronous

• A setter doesn’t change the state immediately: it is
a request to REACT to update the state when this
component is redisplayed.

app/Apps/SimplestStateWithConsole.tsx

function handleClick() {
 console.error('Button pressed!');
 console.log('before setCount: count = ', count)
 setCount(count + 1)
 console.log('after setCount: count = ', count)
 }

Console methods: https://developer.mozilla.org/en-US/docs/Web/API/console
26

https://developer.mozilla.org/en-US/docs/Web/API/console

Setters are asynchronous

app/Apps/SimplestStateWithConsole.tsx

function handleClick() {
 console.error('Button pressed!');
 console.log('before setCount: count = ', count)
 setCount(count + 1)
 console.log('after setCount: count = ', count)
 }

27

Nest Components, Passing State as
Properties

import { CountingButton } from './CountingButton';

export default function App() {
 const [globalCount, setGlobalCount] = useState(0)

 function handleClick() {setGlobalCount(globalCount + 1)}

 return (
 <VStack>
 <Box border="1px" padding='1'>Total count = {globalCount}</Box>
 <Box h="20px" />
 <CountingButton name="Button A" onClick={handleClick} />
 <Box h="20px" />
 <CountingButton name="Button B" onClick={handleClick} />
 </VStack>
)}

app/Apps/TwoCountingButtons.tsx

A common pattern in
React is to nest
components, passing
information from
parent to child via
props.

28

CountingButton.tsx

export function CountingButton(props: {
 name:string, onClick:() => void }) {

 const name = props.name
 const [localCount, setLocalCount] = useState(0)

 function handleClick() {
 console.error(props.name, 'pressed!');
 setLocalCount(localCount + 1)

props.onClick() // propagate to parent

 }

 return (
 <VStack>
 <Box>
 count for {props.name} = {localCount}
 </Box>

 <Button onClick={handleClick}>
 Increment {name}!
 </Button>
 </VStack>
)

}

app/Apps/CountingButton.tsx

(Some styling has been
removed to reduce clutter
on this screen.}

29

Nest Components, Passing State as
Properties

import { CountingButton } from './CountingButton';

export default function App() {
 const [globalCount, setGlobalCount] = useState(0)

 function handleClick() {setGlobalCount(globalCount + 1)}

 return (
 <VStack>
 <Box border="1px" padding='1'>Total count = {globalCount}</Box>
 <Box h="20px" />
 <CountingButton name="Button A" onClick={handleClick} />
 <Box h="20px" />
 <CountingButton name="Button B" onClick={handleClick} />
 </VStack>
)}

app/Apps/TwoCountingButtons.tsx

A common pattern in
React is to nest
components, passing
information from
parent to child via
props.

30

TwoCountingButtons demo

31

A ToDo App
export default function ToDoApp () {
 const [todoList,setTodolist] = useState<TodoItem[]>([])
 function handleAdd (newItem:TodoItem) {
 if (newItem.title === '') {return} // ignore blank button presses
 setTodolist(todoList.concat(newItem))
 }
 function handleDelete(targetId:string) {
 const newList = todoList.filter(item => item.id != targetId)
 setTodolist(newList)
 }

 return (
 <VStack>
 <Heading>TODO List</Heading>
 <ToDoItemEntryForm onAdd={handleAdd}/>
 <ToDoListDisplay items={todoList} onDelete={handleDelete}/>
 </VStack>
)
}

app/Apps/ToDoApp.tsx

32

Typical Page

33

Pattern: display a list of items using map

export function ToDoListDisplay(props: { items: ToDoItem[],
 onDelete:(id:string) => void })
 return (
 <Table>
 <Tbody>
 {
 props.items.map((eachItem) =>
 <ToDoItemDisplay item={eachItem}
 key={eachItem.id}
 onDelete={props.onDelete} />)
 }
 </Tbody>
 </Table>
)
}

34

But using map comes with a big gotcha.

export function ToDoListDisplay(props: { items: ToDoItem[],
 onDelete:(id:string) => void })
 return (
 <Table>
 <Tbody>
 {
 props.items.map((eachItem) =>
 <ToDoItemDisplay item={eachItem}

key={eachItem.id}
 onDelete={props.onDelete} />)
 }
 </Tbody>
 </Table>
)
}

35

We set up the key in the input form

36

app/Apps/ToDoItemEntryForm.tsx

export function ToDoItemEntryForm (props: {onAdd:(item:ToDoItem)=>void}) {
 // state variables for this form
 const [title,setTitle] = useState<string>("")
 const [priority,setPriority] = useState("")
 const [key, setKey] = useState(0) // key is assigned when the item is created.

 function handleClick(event) { --- } // on next slide…

 return (
 <VStack spacing={0} align='left'>
 <form>
 <FormControl>
 <VStack align='left' spacing={0}>
 <FormLabel as="b">Add TODO item here:</FormLabel>
 <HStack w='200' align='left'>

 <Input
 name="title"
 value={title}
 placeholder='type item name here'

onChange={(event => {
setTitle(event.target.value);
console.log('setting Title to:', event.target.value)

 })}
 />

The state of the form is kept in the state
variables of the component

One <Input> component for each blank
space in the form.

Update the state variable at every keypress

handleClick actually assigns the key

37

// state variables for this form
 const [title,setTitle] = useState<string>("")
 const [priority,setPriority] = useState("")
 const [key, setKey] = useState(1) // key is assigned when the item is created.

 function handleClick(event) {
 event.preventDefault() // magic, sorry.
 const newItem:ToDoItem = {title: title, priority: priority, key: key}
 console.log('adding:', newItem)
 props.onAdd(newItem) // tell the parent about the new item
 setTitle('') // resetting the values redisplays the placeholders
 setPriority('')
 setKey(key => key + 1) // generate a new unique key for the next item
 }

The key attribute must be unique and stable.

• This doesn’t work:

props.items.map((eachItem,index) =>
 <ToDoItemDisplay item={eachItem} key={index} onDelete={props.onDelete} />
)

38

Summarizing React Behavior

• React uses default state for the first render of our component.

• When setter is called, React asynchronously re-renders our
component and updates the state variable.

• Updating the DOM in the browser is slow - it is vital that React
does efficient diff’ing

• Example: adding a new comment on a YouTube video
shouldn’t make the browser re-layout the whole page

• React makes re-rendering faster by updating only the part that
changes.

• This is called “Reconciliation”

• It uses some magic like keeping track of state of each
component (e.g., second component was liked)

• Keys are necessary for correct re-rendering of lists. These
should be unique and stable (don’t change with each update)

39

Review

• Now that you've studied this lesson, you should be
able to:
• Understand how the React framework binds data (and

changes to it) to a UI

• Create simple React components that use state and
properties

• In Module 08, we'll study another feature of React that
enhances modularity: hooks.

40

	Default Section
	Slide 1: CS 4530: Fundamentals of Software Engineering Module 7: React
	Slide 2: Learning Objectives for this Lesson
	Slide 3: HTML: The Markup Language of the Web
	Slide 4: Rich, interactive web apps
	Slide 5: Typical properties of web app UIs
	Slide 6: Components represent widgets in object-like style
	Slide 7: Components Example: Like button component
	Slide 8: Server side vs. client side
	Slide 9: Expressing Logic
	Slide 10: Embedding Code in HTML
	Slide 11: Embedding HTML in TypeScript Aka JSX or TSX
	Slide 12: JSX/TSX Embeds HTML in TypeScript
	Slide 13: React is a Framework for Components
	Slide 14: React makes it easy to build rich, interactive web apps (perhaps with infinite scrolling of cats!)
	Slide 15: Creating React applications
	Slide 16: Creating New React Applications
	Slide 17: Here’s a sample interaction…
	Slide 18: React Has a Rich Component Library
	Slide 19: Installing Chakra for next.js:
	Slide 20: Hello World in React
	Slide 21: Next.js renders whatever is in app/page.tsx
	Slide 22: You may see “Class” components, too – but we won’t write them
	Slide 23: React Components Can Receive Properties.
	Slide 24: Component State is Data That Changes
	Slide 25: Example
	Slide 26: Setters are asynchronous
	Slide 27: Setters are asynchronous
	Slide 28: Nest Components, Passing State as Properties
	Slide 29: CountingButton.tsx
	Slide 30: Nest Components, Passing State as Properties
	Slide 31: TwoCountingButtons demo
	Slide 32: A ToDo App
	Slide 33: Typical Page
	Slide 34: Pattern: display a list of items using map
	Slide 35: But using map comes with a big gotcha.
	Slide 36: We set up the key in the input form
	Slide 37: handleClick actually assigns the key
	Slide 38: The key attribute must be unique and stable.
	Slide 39: Summarizing React Behavior
	Slide 40: Review

