
CS 4530: Fundamentals of Software Engineering
Module 7: React

Adeel Bhutta and Mitch Wand

Khoury College of Computer Sciences

1

© 2023 Released under the CC BY-SA license

https://creativecommons.org/licenses/by-sa/4.0/


Learning Objectives for this Lesson

• By the end of this lesson, you should be able to:
• Understand how the React framework binds data (and 

changes to it) to a UI

• Create simple React components that use state and 
properties
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HTML: The Markup Language of the 
Web
• Language for describing structure 

of a document

• Denotes hierarchy of elements

• What might be elements in this 
document?
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Rich, interactive web apps

• Infinite scrolling of cats
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Typical properties of web app UIs

• Each widget has both visual presentation & logic

• Some widgets occur more than once
• e.g., comment/like widgets

• Changes to data should cause changes to widget
• e.g., new images, new comments should show up in real 

time

• Widgets have hierarchical structure

• Action on a widget may affect other widgets
• e.g., clicking on 'like' button executes some logic related 

to the widget itself,
• It may also affect the widget the contains the ‘like’ 

button
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Components represent 
widgets in object-like style

• Organize related logic and presentation 
into a single unit
• Includes necessary state and the logic for 

updating this state
• Includes presentation for rendering this state 

into HTML

• Synchronizes state and visual presentation
• Whenever state changes, HTML should be 

rendered again
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Components
Example: Like button component

• What does the button keep track of?
• Is it liked or not
• What post this is associated with

• What logic does the button have?
• When changing like status, send update to 

server

• How does the button look?
• Filled in if liked, hollow if not
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Server side vs. client side

• Where should template/component be instantiated?

• Server-side frameworks: Template instantiated on server
• Examples: JSP, ColdFusion, PHP, ASP.NET
• Logic executes on server, generating HTML that is served to 

browser

• Front-end framework: Template runs in web browser
• Examples: React, Angular, Meteor, Ember, Aurelia, …
• Server passes template to browser; browser generates HTML 

on demand
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Expressing Logic

• Templates/components require combining logic 
with HTML
• Conditionals - only display presentation if some 

expression is true
• Loops - repeat this template once for every item in 

collection

• How should this be expressed?
• Embed code in HTML (ColdFusion, JSP, Angular) 
• Embed HTML in code (React)
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Embedding Code in HTML
• Template takes the form of an 

HTML file, with extensions
• Popular for server-side frameworks

• Uses another language (e.g., Java, 
C) or custom language to express 
logic

• Found in frameworks such as PHP, 
Angular, ColdFusion, ASP (NOT 
React)

• Can’t type check anything
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Embedding HTML in TypeScript
Aka JSX or TSX
• How do you embed HTML in 

TypeScript and get syntax checking?

• Idea: extend the language: JSX, TSX
• JavaScript (or TypeScript) language, 

with additional feature that 
expressions may be HTML

• It’s a new language
• Browsers do not natively run JSX (or 

TypeScript)
• We use build tools that compile 

everything into JavaScript
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JSX/TSX Embeds HTML in TypeScript

• Example:

• HTML embedded in TypeScript
• HTML can be used as an expression
• HTML is checked for correct syntax

• Can use { expr } to evaluate an expression and return a 
value
• e.g., { 5 + 2 }, { foo() } 

• To wrap on multiple lines, wrap the TSX/JSX in 
parentheses  (…)

• Value of expression is a piece of HTML

return <div>Hello {someVariable}</div>;
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React is a Framework for Components

• Created by Facebook

• Powerful abstractions for describing UI components

• Official documentation & tutorials: https://reactjs.org/ 

• Components are constructed in the browser (“front-end”)

• Key concepts:
• Embed HTML in TypeScript
• Track application “state”
• Automatically and efficiently re-render page in browser based on 

changes to state
• But: some implementations of React allow components to be pre-

constructed in the server.  
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React makes it easy to build rich, interactive web 
apps (perhaps with infinite scrolling of cats!)

Built with React

Plus, AirBNB, Uber, Pinterest, 
Netflix, Twitter and 8855 more
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Creating React applications

• A React application is a complicated beast.

• There are several popular frameworks for building 
such an application

• The one we will use is called next.js . 

• It is a full-featured framework; we will use only a 
small fraction of its features.
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Creating New React Applications

• React applications must be compiled into a format that 
browsers can understand

• create-next-app is a set of scripts to automate this 
process.

• npx create-next-app starts an interactive session that 
creates a fully-featured TS package

• Probably you will never do this in this course– the “fully-
featured TS package” is a big beast.

• Better plan is to modify one of the packages that we supply 
you.
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Here’s a sample interaction…
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React Has a Rich Component Library
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Installing Chakra for next.js: 

• Just say:

npm i -–save @chakra-ui/react @chakra-ui/next-js \

@emotion/react @emotion/styled framer-motion
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import * as React from 'react';
import {
 Heading,
 VStack
} from '@chakra-ui/react';

function HelloWorldComponent() {
  return (
    <VStack>
      <Heading>Hello World</Heading>
    </VStack>
 )
}

export default function App() {
  return (<HelloWorldComponent />)
}

Hello World in React

“Return the following HTML whenever the 
component is rendered”

The HTML is dynamically 
generated by the library.

app/Apps/HelloWorld.tsx
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Next.js renders whatever is in app/page.tsx

import App from './Apps/HelloWorld'
// import App from './Apps/HelloWorldDave'
// import App from './Apps/App1'; 

export default function HomePage() {
 return (  
   <ChakraProvider>
    <App />
   </ChakraProvider> 
 )
}

app/page.tsx
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You may see “Class” components, too – but 
we won’t write them

Hello World, Circa 2016

(Before the “Class” keyword!)

Hello World, Circa 2020

(Defined as a Class)

Hello World, Circa 2022 

(Defined as a function)

export function HelloMessage(){

 return <div>Hello, World!</div>

}

class HelloMessage extends React.Component {

 render(){

  return <div>Hello, World!</div>

 }

}

var HelloMessage = React.createClass({

 render: function() {

  return <div>Hello, World!</div>

 }

})

22



React Components Can Receive Properties.
• Properties are passed in an argument to the component

• Properties are specified as attributes when the 
component is instantiated

• Properties can not be changed by the component 

export default function App() {
  return (<VStack>
   <HelloWorldWithName name='Avery'/>
   <HelloWorldWithName name='Dave'/>
   </VStack>  
  )
}
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Component State is Data That Changes

• State is data that, when changed, should 
trigger UI update

• State is created by useState.

• The state is accessed through state 
variables in the component.

• The first variable is the accessor, the 
second is the setter.

• The only way to change the value of a 
state variable is with the setter

import { useState } from 'react';
function Foo() {
const [count, setCount] = useState(0)
 ….
}

You could choose any names for the variable and its 
setter; for this class, please follow the naming 
convention (goodVariableNlame, setGoodVariablename) 
that we’e used here.
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Example

export default function App() {

 const [count, setCount] = useState(0)

 function handleClick() { setCount(count + 1) } 

 return (
  <VStack>
   <Box> count = {count} </Box>
   <Button onClick={handleClick} >
    Increment Count!
   </Button>
  </VStack>
 )

}

app/Apps/SimplestState.tsx

(Some styling has been 
removed to reduce clutter 
on this screen.}
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Setters are asynchronous

• A setter doesn’t change the state immediately: it is 
a request to REACT to update the state when this 
component is redisplayed. 

app/Apps/SimplestStateWithConsole.tsx

function handleClick() {
  console.error('Button pressed!');
  console.log('before setCount: count = ', count)
  setCount(count + 1)
  console.log('after setCount: count = ', count)
 }

Console methods: https://developer.mozilla.org/en-US/docs/Web/API/console
26

https://developer.mozilla.org/en-US/docs/Web/API/console


Setters are asynchronous

app/Apps/SimplestStateWithConsole.tsx

function handleClick() {
  console.error('Button pressed!');
  console.log('before setCount: count = ', count)
  setCount(count + 1)
  console.log('after setCount: count = ', count)
 }

27



Nest Components, Passing State as 
Properties

import { CountingButton } from './CountingButton';

export default function App() {
 const [globalCount, setGlobalCount] = useState(0)

 function handleClick() {setGlobalCount(globalCount + 1)}

 return (
  <VStack>
   <Box border="1px" padding='1'>Total count = {globalCount}</Box>
   <Box h="20px" />
   <CountingButton name="Button A" onClick={handleClick} /> 
      <Box h="20px" />
   <CountingButton name="Button B" onClick={handleClick} />
  </VStack>
 )}

app/Apps/TwoCountingButtons.tsx

A common pattern in 
React is to nest 
components, passing 
information from 
parent to child via 
props.
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CountingButton.tsx

export function CountingButton(props: { 
  name:string, onClick:() => void }) {

 const name = props.name
 const [localCount, setLocalCount] = useState(0)

 function handleClick() {
  console.error(props.name, 'pressed!');
  setLocalCount(localCount + 1)  

props.onClick() // propagate to parent

 }

 return (
  <VStack>
   <Box>
    count for {props.name} = {localCount}
   </Box>

   <Button onClick={handleClick}>
    Increment {name}!
   </Button>
  </VStack>
 )

}

app/Apps/CountingButton.tsx

(Some styling has been 
removed to reduce clutter 
on this screen.}
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Nest Components, Passing State as 
Properties

import { CountingButton } from './CountingButton';

export default function App() {
 const [globalCount, setGlobalCount] = useState(0)

 function handleClick() {setGlobalCount(globalCount + 1)}

 return (
  <VStack>
   <Box border="1px" padding='1'>Total count = {globalCount}</Box>
   <Box h="20px" />
   <CountingButton name="Button A" onClick={handleClick} /> 
      <Box h="20px" />
   <CountingButton name="Button B" onClick={handleClick} />
  </VStack>
 )}

app/Apps/TwoCountingButtons.tsx

A common pattern in 
React is to nest 
components, passing 
information from 
parent to child via 
props.
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TwoCountingButtons demo
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A ToDo App 
export default function ToDoApp () {
 const [todoList,setTodolist] = useState<TodoItem[]>([])
 function handleAdd (newItem:TodoItem) {
  if (newItem.title === '') {return}  // ignore blank button presses
  setTodolist(todoList.concat(newItem))
 }
 function handleDelete(targetId:string) {
  const newList = todoList.filter(item => item.id != targetId)
  setTodolist(newList)
 }

 return (
 <VStack>
  <Heading>TODO List</Heading>
  <ToDoItemEntryForm onAdd={handleAdd}/>
  <ToDoListDisplay items={todoList} onDelete={handleDelete}/>
 </VStack>
 )
}

app/Apps/ToDoApp.tsx
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Typical Page
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Pattern: display a list of items using map

export function ToDoListDisplay(props: { items: ToDoItem[], 
                                         onDelete:(id:string) => void }) 
 return (
  <Table>   
   <Tbody>
       {
     props.items.map((eachItem) => 
       <ToDoItemDisplay item={eachItem} 
                key={eachItem.id} 
                onDelete={props.onDelete} />)
    }
   </Tbody>
  </Table>
 )
}
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But using map comes with a big gotcha.

export function ToDoListDisplay(props: { items: ToDoItem[], 
                                         onDelete:(id:string) => void }) 
 return (
  <Table>   
   <Tbody>
       {
     props.items.map((eachItem) => 
       <ToDoItemDisplay item={eachItem} 

key={eachItem.id} 
                onDelete={props.onDelete} />)
    }
   </Tbody>
  </Table>
 )
}
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We set up the key in the input form
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app/Apps/ToDoItemEntryForm.tsx

export function ToDoItemEntryForm (props: {onAdd:(item:ToDoItem)=>void}) {
  // state variables for this form
  const [title,setTitle] = useState<string>("")
  const [priority,setPriority] = useState("")
  const [key, setKey] = useState(0)   // key is assigned when the item is created.
 
  function handleClick(event) { --- } // on next slide…
 
  return (  
   <VStack spacing={0} align='left'>
    <form>
     <FormControl>
      <VStack align='left' spacing={0}>
      <FormLabel as="b">Add TODO item here:</FormLabel>
      <HStack w='200' align='left'>
      
      <Input
       name="title"
       value={title}
       placeholder='type item name here'

onChange={(event => {
setTitle(event.target.value);
console.log('setting Title to:', event.target.value)

       })}
      />

The state of the form is kept in the state 
variables of the component

One <Input> component for each blank 
space in the form.

Update the state variable at every keypress



handleClick actually assigns the key
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// state variables for this form
  const [title,setTitle] = useState<string>("")
  const [priority,setPriority] = useState("")
  const [key, setKey] = useState(1)   // key is assigned when the item is created.
 
  function handleClick(event) {
   event.preventDefault() // magic, sorry.   
   const newItem:ToDoItem = {title: title, priority: priority, key: key}
   console.log('adding:', newItem)
  props.onAdd(newItem)    // tell the parent about the new item
   setTitle('')           // resetting the values redisplays the placeholders
   setPriority('')  
      setKey(key => key + 1) // generate a new unique key for the next item
  }



The key attribute must be unique and stable.

• This doesn’t work:

props.items.map((eachItem,index) => 
   <ToDoItemDisplay item={eachItem} key={index} onDelete={props.onDelete} />
)
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Summarizing React Behavior

• React uses default state for the first render of our component.

• When setter is called, React asynchronously re-renders our 
component and updates the state variable.

• Updating the DOM in the browser is slow - it is vital that React 
does efficient diff’ing

• Example: adding a new comment on a YouTube video 
shouldn’t make the browser re-layout the whole page

• React makes re-rendering faster by updating only the part that 
changes. 

• This is called “Reconciliation”

• It uses some magic like keeping track of state of each 
component (e.g., second component was liked)

• Keys are necessary for correct re-rendering of lists. These 
should be unique and stable (don’t change with each update)
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Review

• Now that you've studied this lesson, you should be 
able to:
• Understand how the React framework binds data (and 

changes to it) to a UI

• Create simple React components that use state and 
properties

• In Module 08, we'll study another feature of React that 
enhances modularity: hooks. 
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