
Our Feature: UNO
When determining what feature we wanted to add 

to Covey.Town, we started right away thinking about 
games. We thought that just TicTacToe wasnt enough 
for the town, and so decided to make a new game. We 
picked UNO for two reasons: First, we know that card 
games are very popular for coding, and have 
experienced coding them before. Second, we 
recognized that many people know the rules of UNO 
already, and therefore we would be offering a game 
that many people already know and love. 

And so, we developed UNO for Covey.Town. 
Players can now enter an UNOGameArea, where they 
are able to spectate or join a game of UNO with up to 
3 friends or random townsfolk. The rules of our UNO 
Game are very similar to UNO in real life, but we 
have a button to open the rules if anyone needs a 
refresher. 

Past just playing with your friends, we offer the ability 
to press a button and add up to 3 AI players to the 
UNO game to play against. You get to pick the 
difficulty of the AI opponent, and they will play 
against you as though they are a real player. For this 
version of the game, we only have easy and medium 
AI implemented. 

Additionally, we have connected our UNO Game to a 
database. Winners and losers of each game have their 
total wins and losses updated on the database. When 
in a game, the user may press the leaderboard button 
to see the top 10 UNO players across all towns. 

Demo and Source:
Our demo is available at 
https://uno-frontend-9c12.onrender.com/ and our code 
at 
https://github.com/neu-cs4530/fall23-team-project-gro
up-209.git 

Our Technology Stack & Design: 
Our design for our game of UNO is handled very 

similarly to the existing game of Tic Tac Toe. We 
followed the Model, View, Controller strategy in order 
to implement a very common object-oriented design 
pattern. 

The model in the backend holds necessary values 
and logic that handles creation and distribution of 
cards to players in the game along with handling 
moves from players and AI opponents. The controller 
handles calls from the view and sends respective calls 
to the model to progress the game. Emitting changes 
to listeners also happens in the controller. The view 
takes these values from the controller and displays it 
to the user in a way they can understand how the 
game is being played. It attempts to mimic the way a 
real UNO game would be laid out on a table. 

The model with AI is held within the townService 
backend, while the controller and view are held within 
the frontend of covey.town. The leaderboard store is a 
Google Firebase database, and the deployments and 
hosting of our services is handled on Render.

Future Work:
In the future, there are a few things that we would 

like to see added to our UNO Game. Most importantly 
would be a hard level AI opponent. This hard 
opponent could be trained to play the game and would 
be a lot smarter than the current implementations. If 
we had more time we would have had this in our 
current game. 

Additionally, we would definitely enhance our 
leaderboard feature. Some enhancements could be to 
allow the user to search for themselves in the 
leaderboard, allow them to see their win/loss ratio, or 
sort by wins and losses.

Finally, we would add some graphical 
enhancements to the view. We could bring in actual 
uno card images to use for the players deck, we could 
add an arrow to depict the flow of turns, and could 
add different Icons for AI players. 

CS4530 Final Project: UNO
Group 209

Ayush Pissurlenkar, Francesco Duca, Nolan 
Mungovan, Lukas Savarese

When in a game, the player may click the 
leaderboard button to get a display of the top 

UNO players across all towns

Waiting lobby for UNO

In progress UNO Game

https://uno-frontend-9c12.onrender.com/
https://github.com/neu-cs4530/fall23-team-project-group-209.git
https://github.com/neu-cs4530/fall23-team-project-group-209.git

