
CS 4530: Fundamentals of Software Engineering

Lesson 5.2 Evaluating Tests

Jonathan Bell, Adeel Bhutta, Ferdinand Vesely, Mitch Wand
Khoury College of Computer Sciences

1

© 2022 Released under the CC BY-SA license

https://creativecommons.org/licenses/by-sa/4.0/

Learning Objectives for this Lesson
• By the end of this lesson, you should be able to:

• Explain what makes a good test, and give examples and
counter examples

• Explain different things a test suite might accomplish,
and sketch how one might judge how well a test suite
accomplishes those goals

2

Review: Three Purposes of Tests
• Test Driven Development
• Regression Test

• Prevent bugs from (re-)entering during maintenance.

• Acceptance Test
• Customer-level requirement testing
• Validation: Are we building the right system ?

3

These purposes are
copied from Lesson 5.1

What makes a Test Good
• Tests should be hermetic

• Reduce flakiness.

• Tests should be clear
• After failure, should be clear what went wrong.

• Tests should be scoped as small as possible
• Faster and more reliable.

• Tests should make calls against public APIs
• Or they become brittle.

4

For a fuller treatment:
https://learning.oreilly.com/library/view/software-engineering-at/9781492082781/ch12.html#unit_testing

What makes a Test Bad?
• Flaky tests are those that fail intermittently:

• Nondeterminism (e.g., hash codes, random numbers);
• Timing issues (e.g., threads, network).
• Availability of Resources

• Brittle tests are those that are not self-contained:
• Ordering of tests (e.g., assume prior state)

• Mystery tests aren’t clear why they fail:
• Too complicated
• Not enough information provided
• Tests too much code at a time

• All these impede maintenance:
• A capricious, rigid or incomprehensible gatekeeper impedes

the ability to make progress.

5

These are sometimes
referred to as “test smells”

Example of a Flaky Test
it(‘writes right’, () => {

const w = fs.createWriteStream(‘test.txt’);

const t = createBigTree();

t.write(w);

w.end();

const d = fs.readFileSync(‘test.txt’);

/* … check result … */

}

Problem:
• Here we are assuming “test.txt”

is writable and not being used
by something else (e.g., this
same test being run in parallel).

• Test may fail for reasons
unrelated to the code being
tested.

6

What else is wrong with this test?

Example of a Mystery Test
it(‘remove only removes one’, () =>{

const tree = makeBST();
for (let i = 0; i < 1000; ++i) {
tree.add(i);

}
for (let j = 0; j < 1000; ++j) {
for (let i = 0; i < 1000; ++i) {
if (i != j) tree.remove(i);

}
expect(tree.contains(j)).
toBe(true);

}
}

Problem:
• Test is hard to understand
• Testing too much code in one

test
• If it fails, no clue as to what

went wrong:
• “false is not true”

• Test code has
conditionals/loops

(Incidentally, also suffers from
hard-coding 1000 in the test.)

7

Example of a Brittle test
it(‘removes max’, ()=>{

tree.remove(31);

expect(tree.size()).

toBe(4);

}

Problem
• Assumes (mutable) context.
• Uses information unknown to test;
• Test will mis-behave if tests/tree

are reordered

8

What makes a Test Suite good?
• Depends on the purpose of the test suite.
• Test Driven Development

• Does the SUT satisfy its specification? (“functional
testing”)

• Regression Test
• Did something change since some previous version?
• Prevent bugs from (re-)entering during maintenance.

• Acceptance Test
• Does the SUT satisfy the customer (requirement testing)
• Validation: Are we building the right system ?

9

Does the SUT satisfy its specification?
• Test behavior without regard to the implementation

(“black-box testing” or “functional testing”).
• What’s a specification?:

• A precise definition of all acceptable behaviors of a SUT
(outputs, state mutation, other effects) in all situations (state
and inputs)

• A specification may be formal (mathematical), informal
(natural language) or implicit (“I know it when I see it”).

• A test suite is an approximation to an unwritten
specification

• That’s the “T” in TDD
• Adequacy of test suite is likelihood that an implementation

passing all the tests actually fulfills the (unwritten)
specification.

10

Not often seen in the wild

Remember Dijkstra?
“Program testing can be used to
show the presence of bugs, but
never to show their absence!”
– Edsger Dijkstra

• The state space of a SUT is (usually)
infinite, but testing can only execute a
finite number of tests.

• Even if the state space is finite, it may
still be too large to make exhaustive
testing feasible.

11

And this ignores the fallibility of tests.
What if the tests are in error?

Needles in a Haystack

• To find needles, look systematically
• We need to find out

what makes needles special

12

So which of these infinitely many behaviors
should we check?
• Divide the behaviors into regions

of similar behavior called
equivalence classes

• Which points in a region should
we choose?

• It’s fair to assume that if one
point in the region works, then
the others will.

=> partition testing

13

A B

If the program works for input A, it will probably work for input B

Make sure the regions have the right
boundaries.
• Select “special” values of a range

• Boundary values;
• Barely legal, barely illegal

inputs;
=> boundary testing

• Integer overflow a serious
problem: may be implicit

• ComAir problem due to a list
getting more than 32767 elems

• https://arstechnica.com/uncategori
zed/2004/12/4490-2/

14

https://arstechnica.com/uncategorized/2004/12/4490-2/

Do our tests check all of the code?
• This is the question of test coverage.

• Statement or Block coverage
• Branch coverage
• Path coverage
• …

• Quantitative measurement is possible.

15

“Structural testing”

How do you compute Coverage?
• Coverage is computed automatically while the tests

execute
• jest --coverage

• Does it all for you

16

*see example at https://github.com/philipbeel/example-typescript-nyc-mocha-coverage

Statement Coverage
• Each line (or part of) the code (or node in CFG) should

be executed atleast once in the test suite
• There are good tools for measuring how many lines

were executed or not executed
• Jest -- coverage

• Adequacy criterion: each statement must be executed at
least once

Coverage: # executed statements
statements

17

A

B

C

D E

GF

H I

L
M

“test”
✔

✔

✔

✔

✔

✔
✔

63

0

25

50

75

100

Coverage

A

B

C

D E

GF

H I

L
M

“test”
✔

✔

✔

✔

✔

✔
✔

“a+b”

✔

72

0

25

50

75

100

Coverage

A

B

C

D E

GF

H I

L
M

“test”
✔

✔

✔

✔

✔

✔
✔

“a+b”

✔

“%3d”

✔

✔

91

0

25

50

75

100

Coverage

A

B

C

D E

GF

H I

L
M

“test”
✔

✔

✔

✔

✔

✔
✔

“a+b”

✔

“%3d”

✔

✔

“%g”

✔

100

0

25

50

75

100

Coverage

✔

Branch Coverage
• Adequacy criterion: each branch in the CFG must be

executed at least once
coverage: # executed branches

branches

• Subsumes statement testing criterion because
traversing all edges implies traversing all nodes

• Most widely used criterion in industry

22

A

B

C

D E

GF

H I

L
M

✔

✔

✔

✔

✔
✔

✔

✔

✔ ✔

100

0

25.25

50.5

75.75

101

Coverage

“+%0d+%4j”

If the conditional fails and the failure case code is
missing, statement coverage would still get to
100%, even though there is a defect

23

“+%0d+%4j”

24

87

0

25

50

75

100

Coverage

“+%0d+%4j”

✔

✔✔

✔

✔ ✔

✔

25

“+%0d+%4j”

✔

✔✔

✔

✔ ✔

✔

“abc”

✔

87

0

25

50

75

100

Coverage

100

0

25

50

75

100

Coverage

26

Path Coverage
• Sometimes a fault is only

manifest on a particular path
• E.g., choosing the left branch and

then choosing the right branch.
(dashed blue path)

• But the number of paths can be
infinite

• E.g., if there is a loop.

• There are ways to bound the
number of paths to cover.

27

Mutation Testing is a way of checking to see
whether you’ve tested “enough” paths.
• Test framework mutates the code in the SUT

• E.g., replacing “&&” with “||” in an “if” statement.

• Then we see if the test suite fails.
• If the test suite still passes, that means we don’t

have enough tests.
• Difficult in practice:

• Too many mutants possible (time)
• Too many mutants are equivalent or uninteresting:

• rpc.set_deadline(10); ⟶ rpc.set_deadline(20);

28

But possible!
https://research.google/pubs/pub46584/

100% Coverage may be Impossible
• Path coverage (even without loops)

• Dependent conditions: if (x) A; B; if (x) C;

• Branch coverage
• Dead Branches e.g., if (x < 0) A; else if (x == 0) B; else if (x > 0) C;

• (x > 0) test will always succeed

• Statement coverage
• Dead code (e.g., defensive programming)

29

There are many other ways to judge the
Adequacy of Structural Tests
1. Path coverage (usually impossible) implies
2. Branch Coverage implies
3. Block Coverage = Statement coverage.
(Other coverage criteria exist, some incomparable)

See https://en.wikipedia.org/wiki/White-box_testing

30

https://en.wikipedia.org/wiki/White-box_testing

What if the purpose of your test suite is
regression testing?
• Regression tests control maintenance:

• A change cannot be committed until “all” tests pass.
• Often “all tests” means “all small automated unit tests”

• Adequacy includes whether tests cover all uses:
• Uses may include unspecified behavior:

• e.g., Users may assume that a hash result is non-negative;
• Hyrum’s law: any visible behavior may have dependents.

• Users are responsible to add tests:
• Beyoncé rule: “If you liked it you should have put a ring

test on it” (SoftEng @ Google)

31

Adequacy of Acceptance Tests
• Crucial: meet with prospective

customers.
• This is difficult, time-consuming

and expensive.
• But building the wrong product

is much worse!

32

Supplement to Acceptance
Evaluation
• Dogfooding (“Eat your own

dogfood”)
• Be your own customer.
• Weaknesses:

• Employees unrepresentative of
customers

• Whether someone can be
compelled to use a product does
not say whether they would
purchase it.

33

Pareto’s Law

34

Approximately 80% of defects
come from 20% of modules

Review
• Now that you've studied this lesson, you should be

able to:
• Explain some properties of good tests.
• Distinguish flaky, brittle or Mystery tests;
• Describe measures of test suite adequacy, and to know

their limitations;

35

	CS 4530: Fundamentals of Software Engineering��Lesson 5.2 Evaluating Tests
	Learning Objectives for this Lesson
	Review: Three Purposes of Tests
	What makes a Test Good
	What makes a Test Bad?
	Example of a Flaky Test
	Example of a Mystery Test
	Example of a Brittle test
	What makes a Test Suite good?
	Does the SUT satisfy its specification?
	Remember Dijkstra?
	Needles in a Haystack
	So which of these infinitely many behaviors should we check?
	Make sure the regions have the right boundaries.
	Do our tests check all of the code?
	How do you compute Coverage?
	Statement Coverage
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Branch Coverage
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Path Coverage
	Mutation Testing is a way of checking to see whether you’ve tested “enough” paths.
	100% Coverage may be Impossible
	There are many other ways to judge the Adequacy of Structural Tests
	What if the purpose of your test suite is regression testing?
	Adequacy of Acceptance Tests
	Supplement to Acceptance Evaluation
	Pareto’s Law
	Review

