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Learning Objectives for this Lesson
• By the end of this lesson, you should be able to:

• Explain what makes a good test, and give examples and 
counter examples

• Explain different things a test suite might accomplish, 
and sketch how one might judge how well a test suite 
accomplishes those goals
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Review: Three Purposes of Tests
• Test Driven Development
• Regression Test

• Prevent bugs from (re-)entering during maintenance.

• Acceptance Test
• Customer-level requirement testing
• Validation: Are we building the right system ?
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These purposes are 
copied from Lesson 5.1



What makes a Test Good
• Tests should be hermetic

• Reduce flakiness.

• Tests should be clear
• After failure, should be clear what went wrong.

• Tests should be scoped as small as possible
• Faster and more reliable.

• Tests should make calls against public APIs
• Or they become brittle.
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For a fuller treatment:
https://learning.oreilly.com/library/view/software-engineering-at/9781492082781/ch12.html#unit_testing



What makes a Test Bad?
• Flaky tests are those that fail intermittently:

• Nondeterminism (e.g., hash codes, random numbers);
• Timing issues (e.g., threads, network).
• Availability of Resources

• Brittle tests are those that are not self-contained:
• Ordering of tests (e.g., assume prior state)

• Mystery tests aren’t clear why they fail:
• Too complicated
• Not enough information provided
• Tests too much code at a time

• All these impede maintenance:
• A capricious, rigid or incomprehensible gatekeeper impedes 

the ability to make progress.

5

These are sometimes 
referred to as “test smells”



Example of a Flaky Test
it(‘writes right’, () => {

const w = fs.createWriteStream(‘test.txt’);

const t = createBigTree();

t.write(w);

w.end();

const d = fs.readFileSync(‘test.txt’);

/* … check result … */

}

Problem:
• Here we are assuming “test.txt” 

is writable and not being used 
by something else (e.g., this 
same test being run in parallel).

• Test may fail for reasons 
unrelated to the code being 
tested.

6

What else is wrong with this test?



Example of a Mystery Test
it(‘remove only removes one’, () =>{

const tree = makeBST();
for (let i = 0; i < 1000; ++i) {
tree.add(i);

}
for (let j = 0; j < 1000; ++j) {
for (let i = 0; i < 1000; ++i) {
if (i != j) tree.remove(i);

}
expect(tree.contains(j)).
toBe(true);

}
}

Problem:
• Test is hard to understand
• Testing too much code in one 

test
• If it fails, no clue as to what 

went wrong:
• “false is not true”

• Test code has 
conditionals/loops

(Incidentally, also suffers from 
hard-coding 1000 in the test.)
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Example of a Brittle test
it(‘removes max’, ()=>{

tree.remove(31);

expect(tree.size()).

toBe(4);

} 

Problem
• Assumes (mutable) context.
• Uses information unknown to test;
• Test will mis-behave if tests/tree 

are reordered
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What makes a Test Suite good?
• Depends on the purpose of the test suite.
• Test Driven Development

• Does the SUT satisfy its specification? (“functional 
testing”)

• Regression Test
• Did something change since some previous version? 
• Prevent bugs from (re-)entering during maintenance.

• Acceptance Test
• Does the SUT satisfy the customer (requirement testing)
• Validation: Are we building the right system ?

9



Does the SUT satisfy its specification?
• Test behavior without regard to the implementation 

(“black-box testing” or “functional testing”).
• What’s a specification?:

• A precise definition of all acceptable behaviors of a SUT 
(outputs, state mutation, other effects) in all situations (state 
and inputs)

• A specification may be formal (mathematical), informal 
(natural language) or implicit (“I know it when I see it”).

• A test suite is an approximation to an unwritten 
specification

• That’s the “T” in TDD
• Adequacy of test suite is likelihood that an implementation 

passing all the tests actually fulfills the (unwritten) 
specification.
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Not often seen in the wild



Remember Dijkstra?
“Program testing can be used to 
show the presence of bugs, but 
never to show their absence!”                           
– Edsger Dijkstra

• The state space of a SUT is (usually) 
infinite, but testing can only execute a 
finite number of tests.

• Even if the state space is finite, it may 
still be too large to make exhaustive 
testing feasible.
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And this ignores the fallibility of tests.  
What if the tests are in error?



Needles in a Haystack

• To find needles, look systematically
• We need to find out 

what makes needles special
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So which of these infinitely many behaviors 
should we check?
• Divide the behaviors into regions 

of similar behavior called 
equivalence classes 

• Which points in a region should 
we choose?

• It’s fair to assume that if one 
point in the region works, then 
the others will.

=> partition testing

13

A B

If the program works for input A, it will probably work for input B



Make sure the regions have the right 
boundaries.
• Select “special” values of a range

• Boundary values;
• Barely legal, barely illegal 

inputs;
=> boundary testing

• Integer overflow a serious 
problem: may be implicit

• ComAir problem due to a list 
getting more than 32767 elems

• https://arstechnica.com/uncategori
zed/2004/12/4490-2/
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https://arstechnica.com/uncategorized/2004/12/4490-2/


Do our tests check all of the code?
• This is the question of test coverage.

• Statement or Block coverage
• Branch coverage
• Path coverage
• …

• Quantitative measurement is possible.
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“Structural testing”



How do you compute Coverage?
• Coverage is computed automatically while the tests 

execute
• jest --coverage 

• Does it all for you
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*see example at https://github.com/philipbeel/example-typescript-nyc-mocha-coverage



Statement Coverage
• Each line (or part of) the code (or node in CFG) should 

be executed atleast once in the test suite
• There are good tools for measuring how many lines 

were executed or not executed
• Jest -- coverage

• Adequacy criterion: each statement must be executed at 
least once

Coverage:   # executed statements
# statements
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Branch Coverage
• Adequacy criterion: each branch in the CFG must be 

executed at least once
coverage:   # executed branches

# branches

• Subsumes statement testing criterion because 
traversing all edges implies traversing all nodes

• Most widely used criterion in industry
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If the conditional fails and the failure case code is 
missing, statement coverage would still get to 
100%, even though there is a defect 
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Path Coverage
• Sometimes a fault is only 

manifest on a particular path
• E.g., choosing the left branch and 

then choosing the right branch.
(dashed blue path)

• But the number of paths can be 
infinite

• E.g., if there is a loop.

• There are ways to bound the 
number of paths to cover.
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Mutation Testing is a way of checking to see 
whether you’ve tested “enough” paths. 
• Test framework mutates the code in the SUT

• E.g., replacing “&&” with “||” in an “if” statement. 

• Then we see if the test suite fails.
• If the test suite still passes, that means we don’t 

have enough tests.
• Difficult in practice:

• Too many mutants possible (time)
• Too many mutants are equivalent or uninteresting:

• rpc.set_deadline(10); ⟶ rpc.set_deadline(20);
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But possible!
https://research.google/pubs/pub46584/



100% Coverage may be Impossible
• Path coverage (even without loops)

• Dependent conditions: if (x) A; B; if (x) C;

• Branch coverage
• Dead Branches e.g., if (x < 0) A; else if (x == 0) B; else if (x > 0) C;

• (x > 0) test will always succeed

• Statement coverage
• Dead code (e.g., defensive programming)
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There are many other ways to judge the 
Adequacy of Structural Tests
1. Path coverage (usually impossible) implies
2. Branch Coverage implies
3. Block Coverage = Statement coverage.
(Other coverage criteria exist, some incomparable)

See https://en.wikipedia.org/wiki/White-box_testing
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https://en.wikipedia.org/wiki/White-box_testing


What if the purpose of your test suite is 
regression testing?
• Regression tests control maintenance:

• A change cannot be committed until “all” tests pass. 
• Often “all tests” means “all small automated unit tests”

• Adequacy includes whether tests cover all uses:
• Uses may include unspecified behavior:

• e.g., Users may assume that a hash result is non-negative;
• Hyrum’s law: any visible behavior may have dependents.

• Users are responsible to add tests:
• Beyoncé rule: “If you liked it you should have put a ring

test on it” (SoftEng @ Google)
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Adequacy of Acceptance Tests
• Crucial: meet with prospective 

customers.
• This is difficult, time-consuming 

and expensive.
• But building the wrong product 

is much worse!

32



Supplement to Acceptance 
Evaluation
• Dogfooding (“Eat your own 

dogfood”)
• Be your own customer.
• Weaknesses:

• Employees unrepresentative of 
customers

• Whether someone can be 
compelled to use a product does 
not say whether they would 
purchase it.
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Pareto’s Law
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Approximately 80% of defects
come from 20% of modules



Review
• Now that you've studied this lesson, you should be 

able to:
• Explain some properties of good tests.
• Distinguish flaky, brittle or Mystery tests;
• Describe measures of test suite adequacy, and to know 

their limitations;
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