
CS 4530: Fundamentals of Software Engineering

Lesson 5.3 Testing Systems

Jonathan Bell, Adeel Bhutta, Ferdinand Vesely, Mitch Wand
Khoury College of Computer Sciences

1

© 2022 Released under the CC BY-SA license

https://creativecommons.org/licenses/by-sa/4.0/

Learning Objectives for this Lesson
• By the end of this lesson, you should be able to:

• Explain why you might need a "test double“ in your testing
• Explain the differences between different kinds of test “doubles” such

as “stubs, mocks, spies, fakes”

2

Review: What is the purpose of Test Suite?
• Test Driven Development

• Does the SUT satisfy its specification? (“functional
testing”)

• Regression Test
• Did something change since some previous version?
• Prevent bugs from (re-)entering during maintenance.

• Acceptance Test
• Does the SUT satisfy the customer (requirement testing)
• Validation: Are we building the right system ?

3

These purposes are
copied from Lesson 5.2

• Database component
• Contents may need to reflect/simulate real-world;
• Data may be expensive/proprietary/confidential.

• Network connections
• ”Real” connections may be slow/flaky/disrupted;
• Resources may have changed since test was written.

• Environment
• Interactions with OS, locale or other software.

• Human actors
• Ultimately unpredictable.

Large Systems are Hard to Test

4

Unit Testing is not sufficient

5

Driver

Stub Stub

• You are used to using Drivers and
Stubs in your tests

• Overall systems are “a little more”
complicated

Mo

Test Doubles replace uncontrollable
pieces of the environment

6

Network
Resources

Database

Business
Logic

Mock network

Fake Database

Random user

Mo

What are Test Doubles?

7

Network
Resources

Database

Business
Logic

Mock network

Fake Database

Random user

Test DoubleTest Double

Test Double

Test Stub is a Double that just supplies the
same interface
• Supply an object with the same interface:

• Same methods;
• Default result values (i.e., canned answers).

• The stub gets the test to run:
• If the client blindly uses the stub, it can proceed;
• If the client expects something specific from the object,

the test will likely fail.

8

Test Stub Example
final class Service {

public function doSomething(UserModelInterface user): Int {
/* Do things */
return user.uuid;

}
}
final class ServiceTest extends TestCase {

public function testDoSomething(): void {
// The service needs a implementation `UserModelInterface`.
String uuid = (new Service()).doSomething(new UserStub());
self.assertStringContainsString('0000-000-000-00001', uuid);

}
}
interface UserModelInterface {

public function getUuid(): String;
}
final class UserStub implements UserModelInterface {

public function getUuid(): String {
return '0000-000-000-00001';

}
}

getUuid() is a
stub

Sometimes Test Stub is not enough
• You might want your stub to do atleast two more

things:
1. Remember how the stub was used;

(“memory”)
2. Program the responses of the stub for

different situations.

10

Test Spy is a stub that remembers how the
object was called
• Test can check what happened earlier;

• For example: a particular method should be called
1. First with parameters “foo” and 42;
2. Then with parameters “quux” and -88.

• A spy can be useful in conjunction with the “real”
environment:

• What was sent on the network?
• How many times a problem was logged?
• What was inserted in the database?

• But most often used with a “mock.” (we will discuss
this later)

11

Spy
“remembers”

Test Spy Example
interface Logger {

public function log(String message): void;

}

final class LoggerSpy implements Logger {

public Array messages = [];

public function log(string message): void {

this.messages[] = message;

}

}

final class UserNotifier {

public function __construct(private Logger logger) {}

public function registerUser(UserModelInterface user): void {

this.logger.log("Notifying the user: {user.name()}");

// ...

}

}

final class UserNotifierTest extends TestCase {

public function testLogMessage(): void {

LoggerSpy logger = new LoggerSpy();

UserNotifier notifier = new UserNotifier(logger);

User user = new User(name = 'Jesus');

notifier.registerUser(user);

self.assertStringContainsString(

"Notifying the user: {user.name()}",

first(logger.messages)); }}

Logger
“remembers”

messages

Test Mock is a Double that has Scripted
results
• A test mock has scripted results:

• If such-and-such a method is called
• return some particular value.

• A complex mock can have many scripts:
• Multiple methods;
• Different results for subsequent calls.

• Useful mocking assumes we know how mocked
object will be used.

• If a “mock” has real logic, it becomes a “fake” (we
will discuss this later).

13

Mock has “scripted
answers” and is

used for “behavior
verification”

Jest supports Mocks

14

You will see more of
these in HW3

const mockTwilioVideo = mockDeep<TwilioVideo>();
jest.spyOn(TwilioVideo, 'getInstance').mockReturnValue(mockTwilioVideo);

• Replacing TwilioVideo with Mock

• Jest Tests can be written
it('should use the coveyTownID and player ID properties when requesting a video token',

async () => {

const townName = `FriendlyNameTest-${nanoid()}`;

const townController = new CoveyTownController(townName, false);

const newPlayerSession = await townController.addPlayer(new Player(nanoid()));

expect(mockTwilioVideo.getTokenForTown).toBeCalledTimes(1);

expect(mockTwilioVideo.getTokenForTown).toBeCalledWith(townController.coveyTownID, newPlayerSession.play

});

Jest’s Mock API: https://jestjs.io/docs/mock-function-api

https://jestjs.io/docs/mock-function-api

Here is another Example of Mock /1

15

describe('conversationAreaCreateHandler', () => {

const mockCoveyTownStore = mock<CoveyTownsStore>();

const mockCoveyTownController = mock<CoveyTownController>();

beforeAll(() => {

// Set up a spy for CoveyTownsStore that will always return our mockCoveyTownsStore as the
singleton instance

jest.spyOn(CoveyTownsStore, 'getInstance').mockReturnValue(mockCoveyTownStore);

});

beforeEach(() => {

// Reset all mock calls, and ensure that getControllerForTown will always return the same
mock controller

mockReset(mockCoveyTownController);

mockReset(mockCoveyTownStore);

mockCoveyTownStore.getControllerForTown.mockReturnValue(mockCoveyTownController);

});

. . . .

spying on
getInstance()

method

Here is another Example of Mock /2

16

. . . .

it('Checks for a valid session token before creating a conversation area', ()=>{

const coveyTownID = nanoid();

const conversationArea :ServerConversationArea = { boundingBox: { height: 1, width: 1, x:1, y:1 }, label:
nanoid(), occupantsByID: [], topic: nanoid() };

const invalidSessionToken = nanoid();

// Make sure to return 'undefined' regardless of what session token is passed

mockCoveyTownController.getSessionByToken.mockReturnValueOnce(undefined);

requestHandlers.conversationAreaCreateHandler({

conversationArea,

coveyTownID,

sessionToken: invalidSessionToken,

});

expect(mockCoveyTownController.getSessionByToken).toBeCalledWith(invalidSessionToken);

expect(mockCoveyTownController.addConversationArea).not.toHaveBeenCalled();

});

});

If SessionToken is invalid, don’t call
addConversationArea()

Test Fake is a Mock with semi-real
implementation
• A fake has an implementation of the object being

replaced
• A low-fidelity fake implements things partially

• Enough to work for the test.
• A high-fidelity fake implements most aspects:

• Usually all functional aspects;
• Usually not as efficiently or as scalable.

• The purpose of the fake is to avoid
processes/network/cost:

• So the test can be cheap and deterministic.

• Transcript Server you used in Activity 4.1 was a Fake

17

Fake has
“semi-real

implementation”

How do you provide a Test Double for a
User?
• To replace a user, we can program a “Bot”

• Randomly use mouse, press buttons;
• Arbitrary text;
• Fast or slow.

• Smarter (“Fuzzing”)
• Capture real actions;
• Then make targeted mutations.
• (This applies also to programs taking text input.)

• Expected result can only be imprecise:
• e.g., “not crash” or “not leak secrets”.

18

Weaknesses of Test Doubles
• The Mock/Fake may not behave correctly

• The test may assume wrong behavior;
• Particularly an issue if original object changes

• Mocks have to be maintained as well!
• Solution: Test the mock/fake against a higher fidelity

fake, or against the real thing.

• The SUT may use a different algorithm:
• The Spies expect a particular usage of double;
• The test is “brittle” because it depends on internal

behavior of SUT;

19

Review: Learning Objectives for this Lesson
• You should now be able to:

• Explain why you might need a "test double“ in your testing
• Explain the differences between different kinds of test “doubles” such

as “stubs, mocks, spies, fakes”

• For Further Reading
• Check out Martin Fowler’s article,

“Mocks Aren’t Stubs” https://martinfowler.com/articles/mocksArentStubs.html
• “xUnit Test Patterns: Refactoring Test Code” by Gerard Meszaros

20

https://martinfowler.com/articles/mocksArentStubs.html

	CS 4530: Fundamentals of Software Engineering��Lesson 5.3 Testing Systems
	Learning Objectives for this Lesson
	Review: What is the purpose of Test Suite?
	Large Systems are Hard to Test
	Unit Testing is not sufficient
	Test Doubles replace uncontrollable pieces of the environment
	What are Test Doubles?
	Test Stub is a Double that just supplies the same interface
	Test Stub Example
	Sometimes Test Stub is not enough
	Test Spy is a stub that remembers how the object was called
	Test Spy Example
	Test Mock is a Double that has Scripted results
	Jest supports Mocks
	Here is another Example of Mock /1
	Here is another Example of Mock /2
	Test Fake is a Mock with semi-real implementation
	How do you provide a Test Double for a User?
	Weaknesses of Test Doubles	
	Review: Learning Objectives for this Lesson

