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Learning Objectives for this Lesson
• By the end of this lesson, you should be able to:

• Explain why you might need a "test double“ in your testing
• Explain the differences between different kinds of test “doubles” such 

as “stubs, mocks, spies, fakes”
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Review: What is the purpose of Test Suite?
• Test Driven Development

• Does the SUT satisfy its specification? (“functional 
testing”)

• Regression Test
• Did something change since some previous version? 
• Prevent bugs from (re-)entering during maintenance.

• Acceptance Test
• Does the SUT satisfy the customer (requirement testing)
• Validation: Are we building the right system ?
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These purposes are 
copied from Lesson 5.2



• Database component
• Contents may need to reflect/simulate real-world;
• Data may be expensive/proprietary/confidential.

• Network connections
• ”Real” connections may be slow/flaky/disrupted;
• Resources may have changed since test was written.

• Environment
• Interactions with OS, locale or other software.

• Human actors
• Ultimately unpredictable.

Large Systems are Hard to Test
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Unit Testing is not sufficient
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Driver

Stub Stub

• You are used to using Drivers and 
Stubs in your tests

• Overall systems are “a little more” 
complicated



Mo

Test Doubles replace uncontrollable 
pieces of the environment
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What are Test Doubles?
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Test Stub is a Double that just supplies the 
same interface
• Supply an object with the same interface:

• Same methods;
• Default result values (i.e., canned answers).

• The stub gets the test to run:
• If the client blindly uses the stub, it can proceed;
• If the client expects something specific from the object, 

the test will likely fail.
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Test Stub Example
final class Service {

public function doSomething(UserModelInterface user): Int {
/* Do things */
return user.uuid;

}
}
final class ServiceTest extends TestCase {

public function testDoSomething(): void {
// The service needs a implementation `UserModelInterface`.
String uuid = (new Service()).doSomething(new UserStub()); 
self.assertStringContainsString('0000-000-000-00001', uuid);

}
}
interface UserModelInterface {

public function getUuid(): String;
}
final class UserStub implements UserModelInterface {

public function getUuid(): String {
return '0000-000-000-00001';

}
}

getUuid() is a 
stub



Sometimes Test Stub is not enough
• You might want your stub to do atleast two more 

things:
1. Remember how the stub was used; 

(“memory”)
2. Program the responses of the stub for 

different situations.
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Test Spy is a stub that remembers how the 
object was called
• Test can check what happened earlier;

• For example: a particular method should be called
1. First with parameters “foo” and 42;
2. Then with parameters “quux” and -88.

• A spy can be useful in conjunction with the “real” 
environment:

• What was sent on the network?
• How many times a problem was logged?
• What was inserted in the database?

• But most often used with a “mock.” (we will discuss 
this later)

11

Spy 
“remembers”



Test Spy Example
interface Logger {

public function log(String message): void;

}

final class LoggerSpy implements Logger {

public Array messages = []; 

public function log(string message): void {

this.messages[] = message;

}

}

final class UserNotifier {

public function __construct(private Logger logger) {}

public function registerUser(UserModelInterface user): void {

this.logger.log("Notifying the user: {user.name()}");

// ...

}

}

final class UserNotifierTest extends TestCase {

public function testLogMessage(): void {

LoggerSpy logger = new LoggerSpy();

UserNotifier notifier = new UserNotifier(logger);

User user = new User(name = 'Jesus');

notifier.registerUser(user);

self.assertStringContainsString(

"Notifying the user: {user.name()}",

first(logger.messages) );    }}

Logger 
“remembers” 

messages



Test Mock is a Double that has Scripted 
results
• A test mock has scripted results:

• If such-and-such a method is called
• return some particular value.

• A complex mock can have many scripts:
• Multiple methods;
• Different results for subsequent calls.

• Useful mocking assumes we know how mocked 
object will be used.

• If a “mock” has real logic, it becomes a “fake” (we 
will discuss this later).
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verification”



Jest supports Mocks
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You will see more of 
these in HW3

const mockTwilioVideo = mockDeep<TwilioVideo>();
jest.spyOn(TwilioVideo, 'getInstance').mockReturnValue(mockTwilioVideo);

• Replacing TwilioVideo with Mock

• Jest Tests can be written
it('should use the coveyTownID and player ID properties when requesting a video token',

async () => {

const townName = `FriendlyNameTest-${nanoid()}`;

const townController = new CoveyTownController(townName, false);

const newPlayerSession = await townController.addPlayer(new Player(nanoid()));

expect(mockTwilioVideo.getTokenForTown).toBeCalledTimes(1);

expect(mockTwilioVideo.getTokenForTown).toBeCalledWith(townController.coveyTownID, newPlayerSession.play

});

Jest’s Mock API: https://jestjs.io/docs/mock-function-api

https://jestjs.io/docs/mock-function-api


Here is another Example of Mock /1

15

describe('conversationAreaCreateHandler', () => {

const mockCoveyTownStore = mock<CoveyTownsStore>();

const mockCoveyTownController = mock<CoveyTownController>();

beforeAll(() => {

// Set up a spy for CoveyTownsStore that will always return our mockCoveyTownsStore as the 
singleton instance

jest.spyOn(CoveyTownsStore, 'getInstance').mockReturnValue(mockCoveyTownStore);

});

beforeEach(() => {

// Reset all mock calls, and ensure that getControllerForTown will always return the same 
mock controller

mockReset(mockCoveyTownController);

mockReset(mockCoveyTownStore);

mockCoveyTownStore.getControllerForTown.mockReturnValue(mockCoveyTownController);

});

. . . . 

spying on 
getInstance() 

method



Here is another Example of Mock /2
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. . . . 

it('Checks for a valid session token before creating a conversation area', ()=>{

const coveyTownID = nanoid();

const conversationArea :ServerConversationArea = { boundingBox: { height: 1, width: 1, x:1, y:1 }, label: 
nanoid(), occupantsByID: [], topic: nanoid() };

const invalidSessionToken = nanoid();

// Make sure to return 'undefined' regardless of what session token is passed

mockCoveyTownController.getSessionByToken.mockReturnValueOnce(undefined);

requestHandlers.conversationAreaCreateHandler({

conversationArea,

coveyTownID,

sessionToken: invalidSessionToken,

});

expect(mockCoveyTownController.getSessionByToken).toBeCalledWith(invalidSessionToken);

expect(mockCoveyTownController.addConversationArea).not.toHaveBeenCalled(); 

});

});

If SessionToken is invalid, don’t call 
addConversationArea()



Test Fake is a Mock with semi-real 
implementation
• A fake has an implementation of the object being 

replaced
• A low-fidelity fake implements things partially

• Enough to work for the test.
• A high-fidelity fake implements most aspects:

• Usually all functional aspects;
• Usually not as efficiently or as scalable.

• The purpose of the fake is to avoid 
processes/network/cost:

• So the test can be cheap and deterministic.

• Transcript Server you used in Activity 4.1 was a Fake
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Fake has 
“semi-real 

implementation”



How do you provide a Test Double for a 
User?
• To replace a user, we can program a “Bot”

• Randomly use mouse, press buttons;
• Arbitrary text;
• Fast or slow.

• Smarter (“Fuzzing”)
• Capture real actions;
• Then make targeted mutations.
• (This applies also to programs taking text input.)

• Expected result can only be imprecise:
• e.g., “not crash” or “not leak secrets”.
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Weaknesses of Test Doubles
• The Mock/Fake may not behave correctly

• The test may assume wrong behavior;
• Particularly an issue if original object changes

• Mocks have to be maintained as well!
• Solution: Test the mock/fake against a higher fidelity 

fake, or against the real thing.

• The SUT may use a different algorithm:
• The Spies expect a particular usage of double;
• The test is “brittle” because it depends on internal 

behavior of SUT;
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Review: Learning Objectives for this Lesson
• You should now be able to:

• Explain why you might need a "test double“ in your testing
• Explain the differences between different kinds of test “doubles” such 

as “stubs, mocks, spies, fakes”

• For Further Reading
• Check out Martin Fowler’s article, 

“Mocks Aren’t Stubs” https://martinfowler.com/articles/mocksArentStubs.html
• “xUnit Test Patterns: Refactoring Test Code” by Gerard Meszaros
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