
Community Overflow
CS 4530 - Group 212 - Final Project
Anshul, Sumer, Kaushik, & Immanuel

Our Feature: Community Overflow Our Technology Stack & Design

Demo & Source Future Work

Join/View/Preview a Community

Create edits on the bulletin board & join
the video calls

Post messages in the chat

View Community StatisticsCommunity Home Page

Our source code can be viewed here.
Our demo can be viewed here.

Group Chats

Interactive Q+A

Communities

One of the major motivations for building out communities
was due to the lack of engagement within the platform.
Users did not have a way to communicate with others and
share their thoughts with each other.

Members in a community are automatically added to a
group chat. Users are able to react to messages,
delete/restore messages, see active users, upload files, and
see which users are typing.

Users are able to post Q+A in markdown, receive
notifications, view community stats, post anonymously,
bookmark questions, receive a daily email digest. An LLM
runs at midnight to group questions to a community.

Users can preview/create/join a community and invite their
friends, Upon joining, users can visit the bulletin board,
voice chat, group messaging chat, and view main
community statistics.

We implemented the Community Overflow features in
the existing Fake StackOverflow codebase. Each of the
communities are represented as a Community object
which are dynamically created. Group chats, Q+A, bulletin
board, notifications, video chats, and statistics all live
inside of a community as their own objects.

The majority of our frontend design is built in React with
Chakra components in Typescript. The backend is built
with node as our package manager. Live updates with
group chats, notifications, and the bulletin board are
handled with socket-io. The email digest is sent with the
nodemailer API. Bulletin board is created with tldraw and
the voice chats are done with Jitsi meet. Filtering of
questions to an assigned community is handled with a
Gemini LLM. Uploading images to the cloud is handled
with Bytescale. Emails and the LLM are triggered via
nodecron at midnight. 

Our continuous integration pipeline runs an automated
test suite on the frontend and backend components, and
then deploys the site using Render.

In the future, we could work on revamping our UI to
make it fully integrated and easier to use and see. For
the chat messaging system, we could enhance the UI
to easily integrate more features in the future. Some
possible features are community-wide polls, sending
and running source code, and allowing users to reply
to specific messages to create a thread.

In terms of communities, we could allow for
community moderation tools for the admin. They
could be able to pin messages, mute users, or review
flagged content. They could also be given access to a
community analytics dashboard, which could give
deeper insights into growth, engagement, and popular
content over time.

https://github.com/neu-cs4530/spring25-team-project-spring25-project-group-212
https://cs4530-s25-212.onrender.com/

