
©2023 Jonathan Bell, CC-BY-SA

Course Overview & Software
Process
Advanced Software Engineering
Spring 2023

Introduction

• Jon, Prof Bell, Prof Jon, Dr Bell, Dr Jon, etc…

• Research: Software Engineering, Program
Analysis

• Open source contributor & project founder

Introductions: Class

• Your name

• Your degree program

• Your past experiences with software engineering

• Your motivation for taking this class/what you want to learn

Course Mechanics

• Course website: https://neu-se.github.io/CS4910-7580-Spring-2023/

• Notes:

• Calendar & readings

• Assessments

• Attendance policy

• Discord

https://neu-se.github.io/CS4910-7580-Spring-2023/

Software Engineering as a Discipline c. 1969
[Software Engineering as a Class]
•Software was very inefficient
•Software was of low quality
•Software often did not meet requirements
•Projects were unmanageable and code difficult to maintain
•Software was never delivered

A call to action:
We must study

how to build
software

Software Engineering as a Discipline
[Software Engineering as a Class]

The major cause of the software crisis is that
the machines have become several orders of
magnitude more powerful! To put it quite
bluntly: as long as there were no machines,
programming was no problem at all; when we
had a few weak computers, programming
became a mild problem, and now we have
gigantic computers, programming has
become an equally gigantic problem.

- Edsger W. Dijkstra, in his 1972 Turing Award acceptance speech

https://www.cs.utexas.edu/~EWD/transcriptions/EWD03xx/EWD340.html

Increase in computational capacity over time
Increase over software complexity?

“Implications of Historical Trends in the Electrical Efficiency of Computing” Koomey et al, IEEE Annals of History of Computing 2011

Java Puzzler

HashSet<String> mySet = new HashSet<String>();
mySet.add("a");
mySet.add("b");
Iterator<String> iter = mySet.iterator();
System.out.println(iter.next()); //What is printed?

This class implements the Set interface, backed by a hash table (actually a HashMap instance). It makes no
guarantees as to the iteration order of the set; in particular, it does not guarantee that the order will remain
constant over time. This class permits the null element.

-JavaDoc for HashSet

1,000,000 trials: “a” is printed every time

BUT NOT GUARANTEED

https://docs.oracle.com/javase/7/docs/api/java/util/HashSet.html

Why is this puzzler a problem?
Consider the entire lifespan of this problematic code

class BookTest {
 @Test
 public void testGetStringRepresentation() {
 Book b = new Book("book", "name");

assertEquals("{\"title\":\"book\",\"author\":\"name\"}",
 b.getStringRepresentation());
 }
}

What could go wrong here?

What if Book is just a HashMap?

{

 "title": "book",

 “author": "name"

}

{

 “author": “name",

 "title": "book"

}

Both are possible :(

Whose fault is this?

Software Engineering is Programming at Scale
Hyrum’s Law

“With a sufficient number of users of an API,

it does not matter what you promise in the contract:

all observable behaviors of your system

will be depended on by somebody.”

-Hyrum Wright

For more: see “Software Engineering at Google” Ch 1

Software Engineering is Programming at Scale
Hyrum’s Law

“With a sufficient number of users of an API,

it does not matter what you promise in the contract:

all observable behaviors of your system

will be depended on by somebody.”

-Hyrum Wright

XKCD #1172

https://xkcd.com/1172/

Can we do better than making a law?
Software engineering research aims to automatically improve development processes

https://github.com/TestingResearchIllinois/NonDex

https://github.com/TestingResearchIllinois/NonDex

Software Engineering in a Meme

Software Engineering in an Ancient Meme

History of the tire swing meme

https://www.businessballs.com/amusement-stress-relief/tree-swing-cartoon-pictures-early-versions/

Brainstorm: What is a software
process?

Why explicitly define and discuss the process?

Planning Engineering Projects

In contrast to software:

• Mechanical in nature

• Highly standardized:

• Design process

• Materials

• Construction process

Software Process: Waterfall (~1970)
systematic, sequential approach
Quality Assurance at each phase before
continuing

Requirements

Validate

Retirement

Operations

Test

Implementation
Verify

Design

Waterfall Model: Risk Assumptions

Re
la

tiv
e

Co
st

 to
 F

ix
 D

ef
ec

t

Phase Defect Detected
Communication Planning Modeling Cosntruction Deployment

The cost to fix a defect grows exponentially with each development phase

Waterfall Process Improves on Code + Fix

• Measurable progress with risk contained in each phase

• Possible to estimate each phase based on past projects

• Division of labor: Natural segmentation between phases

Requirements

Validate

Retirement

Operations

Test

Implementation
Verify

Design

Waterfall Model adds
process overhead

Since formal quality assurance happens at each phase, it’s necessary to produce
extremely detailed…

• Requirements documents

• Design documents

• Source code with documentation

Waterfall Model Reduces
Risk by Preventing Change

Traditional waterfall model: no way
to go back “up”

“There are two ways of constructing a software
design: One way is to make it so simple that there
are obviously no deficiencies and the other way is
to make it so complicated that there are no
obvious deficiencies.”

Waterfall Model: Applications

• What projects would this work well in?

• Projects with tremendous uncertainty

• Projects with long time-to-market

• Projects that need extensive QA of requirements

and design

• Projects for which the expense of the planning is

worth it

• Classic examples: military/defense

• Warship that needs to have component interfaces last 80

years

• Spacecraft?

Re
la

tiv
e

Co
st

 to
 F

ix
 D

ef
ec

t

Phase Defect Detected

Communication Modeling Deployment

Waterfall Model: Wasted Work Product

• Wasted productivity can occur through each
phase’s QA process:

• Requirements that become obsolete

• Elaborate architectural designs never used

• Code that sits around not integrated and tested in

production environment, eventually discarded

• Documentation produced per requirements, but

never read

• What if we could eliminate that waste, and reduce
the cost of defects later in development cycle?

• Example: with shorter time-to-market?

Re
la

tiv
e

Co
st

 to
 F

ix
 D

ef
ec

t

Phase Defect Detected

Communication Modeling Deployment

Waterfall Variation: Iterative Process (~1980s)

Initial Concept

Operations

Acceptance

Testing

and Delivery

Requirements

and Iteration

Planning

Next Iteration

Design and

Implement

The Agile Model Reduces Risk by Embracing Change (~2000)
Re

la
tiv

e
Co

st
 to

 F
ix

 D
ef

ec
t

Phase Defect Detected

Communication Planning Modeling Cosntruction Deployment

Waterfall Agile

”Big risk” (Waterfall)

“Less risk” (Agile)

Agile Recognizes that

Long-Term

Planning is Hard.

Agile Empowers Workers to Improve
Processes: Toyota Production System (1990’s)

28

Agile can be a buzzword

Graphic © Christopher Webb

What is a good software engineering process?
Disclaimer: Software Engineering is full of opinions

“Any fool can write code that a computer can
understand. Good programmers write code that
humans can understand”

 - Martin Fowler

Agile Manifesto

We are uncovering better ways of developing 
software by doing it and helping others do it. 

Through this work we have come to value: 

 

That is, while there is value in the items on 
the right, we value the items on the left more.

https://agilemanifesto.org

Individuals and interactions

 
Working software  

Customer collaboration

Responding to change

over processes and tools

over comprehensive documentation

over contract negotiation 

over following a plan

Continuous Improvement is a Key Agile Value

• “Collective ownership”

• Functional and non-functional correctness is checked on the cheap, and
often

• Regular checkpoints to evaluate the efficacy of the process and solicit
improvements

Example Agile Process: XP
Building Software For Shifting/Unknown Requirements

"The development of a piece of software changes its own
requirements. As soon as the customers see the first release,
they learn what they want in the second release...or what they
really wanted in the first. And it's valuable learning, because it
couldn't have possibly taken place based on speculation. It is
learning that can only come from experience. But customers
can't get there alone. They need people who can program, not
as guides, but as companions."

- Kent Beck, in “eXtreme
Programming eXplained”

Agile Practice: Small, Continuous Releases
Checking correctness and quality of the complete system

• System is put into
production before solving
the full problem – new
releases that add value
happen fast (monthly, daily,
hourly…)

• Multiple release phases for
fast-feedback

• More in weeks 8 & 11
https://engineering.fb.com/2017/08/31/web/rapid-release-at-massive-scale/

https://engineering.fb.com/2017/08/31/web/rapid-release-at-massive-scale/

Agile Practice: Code Review
A Formal Process

• A code review is the process in which the author of some
code is asked to explain it to their peers:

• What purpose the code has;

• How the code accomplishes this purpose;

• How the author is confident of this information,

• E.g., show results of running tests (CI results)

• A code review often concerns a code change (“diff”)

SE Research Question: Why Do Code Review?

“Expectations, Outcomes, and Challenges of Modern Code Review”, Bacchelli & Bird, ICSE 2013

SE Research Question: Does Self Review Detect all Defects?

Study of 300 reviews at Cisco in 2006

“Best Kept Secrets of Peer Code Review”, Jason Cohen, SmartBear Software, 2006

Even if developers pre-review their code, many defects still found in peer review

Topics we’ll address this term

• Software Process

• Modularity and Design

• Mining Software Repositories and Open Source Culture

• Testing, Continuous Integration and Devops

• Expertise and knowledge sharing

• Security

• Software engineering in specific domains

Paper Reading Advice

• Note: Might need to re-read an article multiple times, especially if you are not familiar with background material

• As you read, consider the following questions:

1.What is the motivation for this work?

2.What is the problem that is being solved?

3.What is hard about that problem?

4.What is the proposed solution?

5.How is that solution achieved?

6.How is that solution evaluated?

• After reading, reflect:

1.Is this a problem worth solving?

2.Is the solution a good idea?

3.Do you see limitations to the problem, or the solution?

4.Is future work needed to fit this research prototype into the real world problem domain?

5.What questions does this paper leave you with?

• More advice at https://cseweb.ucsd.edu/~wgg/CSE210/howtoread.html

https://cseweb.ucsd.edu/~wgg/CSE210/howtoread.html

Topic Interest Poll/Discussion

