Course Overview & Software
Process

Advanced Software Engineering
Spring 2023

©2023 Jonathan Bell, CC-BY-SA

Introduction

e Jon, Prof Bell, Prof Jon, Dr Bell, Dr Jon, etc...

* Research: Software Engineering, Program
Analysis

* Open source contributor & project founder

Introductions: Class

* Your name
* Your degree program
* Your past experiences with software engineering

* Your motivation for taking this class/what you want to learn

Course Mechanics

* Course website: https://neu-se.qgithub.io/CS4910-7580-Spring-2023/

* Notes:
» Calendar & readings
 Assessments
* Attendance policy

e Discord

https://neu-se.github.io/CS4910-7580-Spring-2023/

Software Engineering as a Discipline c. 1969

[Software Engineering as a Class]

*Software was very inefficient
*Software was of low quality SOFTWARE ENGINEERING
*Software often did not meet requirements

*Projects were unmanageable and code difficult to maintain

*Software was never delivered

e N ——— A call to action:
Garmisch, Germany, 7th to 11th October 1968 We mu St Stu dy
how to build

Chairman: Professor Dr. F. L. Baver S O ftwar e

Co-chairmen: Professor L. Bolliet, Dr. H. J. Helms

Editors: Peter Naur and Brian Randell

January 1969

Software Engineering as a Discipline

[Software Engineering as a Class]

The major cause of the software crisis is that
the machines have become several orders of
magnitude more powerful! To put it quite
bluntly: as long as there were no machines,
programming was no problem at all; when we
had a few weak computers, programming
became a mild problem, and now we have
gigantic computers, programming has
become an equally gigantic problem.

- Edsger W. Dijkstra, In his 1972 Turing Award acceptance speech

https://www.cs.utexas.edu/~EWD/transcriptions/EWD03xx/EWD340.html

Increase iIn computational capacity over time

Increase over software complexity?

1.E+13 . Doty R
| reen Lestiny SiCertex
SC5332
1.E+12 1
| L
1.E+11 - . e
. n o : ii
1.E+10 4 S :»
Cray CS6400 o
'™ | ° ‘:!t‘
o |
% 1.E+09 4 .
o ® **
E | 4
o 'S4 *
Y 1.E+08 1 Cray 1 supercomputer o o - = ®
8 | :.f s
o * 'Y
g 1.E+07 | ’ ..‘ *
| L 4
£ 1.E+06 - . o oo "‘. . .:"
a LETD N A
n | e &
c ! t.‘ =
.2 ‘ ’0 » > :.. e *
‘é 1.E+05 | oty * . b 4 R
é. | IBM 704 o et
o 1.E+04 ¢ o .
(3 o & s ¢
"0, o
: ‘e L. Commcdore 64
1.E+03 1 $., ' DEC FDP-8
‘ .: . °
| ¢ :t.. 2
1.E+02 . s s
. Eniac °
| . ‘ IBM 1130
1.E+01 1 .
. o .
1 Harvard Mark Il
1.E+00 -

1940 1950 1960 1970 1980 1990 2000 2010

Figure 2. Computational capacity over time (computations/second per
computer). These data are based on William D. Nordhaus’ 2007 work,’
with additional data added post-1985 for computers not considered

in his study. Doubling time for personal computers only (1975 to 2009)

m S 1.5 years.

“Implications of Historical Trends in the Electrical Efficiency of Computing” Koom

il 0O = | cnbc.com > 0

2CNBC

] a /1
SIGNIN PRO WATCHLIST MAKE IT SELECT SEARCH QUOTES Q

p— MARKETS BUSINESS INVESTING TECH POLITICS CNBC TV USA - INTL

It’s never been this hard for companies to find
qualified WOrkerS ® @O < i 0O = Not Secure — digit

PUBLISHED WED. FEEB 19 2020.6:5B AM EST | UPDATEIL

DIGITAL JOURNAL [uleiuikesik

Jeff Cox NEWS ECH & SQENCE S0CIAL MEDIA
, e JEFF.CCX.7528 N R . |
" aJEFFCOXCNBCCOM

KEY * About 7 in 10 campanies reparted tz
POINTS level ever, according to Manpower €

How U.S. workforce is responding
technology skills gap
* Job placement professionals say col

provide better training. TIM SANDI F | RUSINFSS

* The level is more than three times h

There is a cyber-skills gap in many developed economies. A recent
highlighted the lack of appropriate skills, like coding, in the U.S. H
also reveals that the workforce acknowledges this, indicating a prc
filled.

Java Puzzler

HashSet<String> mySet = new HashSet<String>();
mySet.add("a");

mySet.add("b");

Iterator<String> iter = mySet.iterator();
System.out.println(iter.next()); //What is printed?

This class implements the Set interface, backed by a hash table (actually a HashMap instance). It makes no
guarantees as to the iteration order of the set; in particular, it does not guarantee that the order will remain

constant over time. This class permits the null element.
-JavaDoc for HashSet

1,000,000 trials: “a” is printed every time

BUT NOT GUARANTEED

https://docs.oracle.com/javase/7/docs/api/java/util/HashSet.html

Why is this puzzler a problem?

Consider the entire lifespan of this problematic code

°1aSzTBOfC>kTest { What could go wrong here?
es

public void testGetStringRepresentation() {
Book b = new Book("book", "name");

assertEquals("{\"title\":\"book\",\"author\":\"name\"}", What if Book is jUSt d HaShMap?
b.getStringRepresentation());

{ {

"title": "book", “author”: “name",

“author'": "name" "title": "book"

}

Both are possible :(

Whose fault is this?

Software Engineering is Programming at Scale
Hyrum’s Law

“With a sufficient number of users of an API,

It does not matter what you promise in the contract:
all observable behaviors of your system

- will be depended on by somebody.”

-Hyrum Wright

For more: see “Software Engineering at Google” Ch 1

Software Engineering is Programming at Scale
Hyrum’s Law

“With a sufficient number of users of an API,
It does not matter what you promise in the contract:

all observable behaviors of your system ST OPDRTE]
-)
will be depended on by somebody. | CHANGES IN VERSION 10.17:
-Hyrum Wright THE CPU NO LONGER OVERHEATS
WHEN YOU HOLD DOWN SPRCEGAR.

COMMENTS:
LONGTIME SERY WRIES:
THIS DPPATE BROKE. MY WORKFLOW!
My CONTROL KEY 15 HARD TREACH,
50 T HOLD SPACEBAR INSTEAD AND T
CONFIGURED EMACS TO INTERPRET A
RAPID TEMPERATURE. RISE. As CONTROL.

ADMIN WRITES
THATS HORRIFYING.

LonNGTiMEUserY WRITES:

LOOK, MY SETOP WORKS FOR ME..
JUST ADD AN OFTION TO REENABLE
SPACEBAR HEATING.

EVERY CHANGE BREAKS SOMEONES WORKFLOW.
XKCD #1172

https://xkcd.com/1172/

Can we do better than making a law?

Software engineering research aims to automatically improve development processes

201¢ [EEE International Conference on Software Testing, Verification and Validation

Detecting Assumptions on Deterministic
Implementations of Non-deterministic Specifications

August Shi. Alex Gyori, Owcelabi Legunsen, and Darkxo Mannoy
Depariment of Computer Science
Urniversity of 1llinois at Urbana-Champaign, USA
Email: {awshi2,gyor legunse2 marnov } @illinois.edu

Abstracl—Some commenly used methods have none
deterministic specifications. ¢.g., iterating through a set can
relurn the chkanents in any erder. However, nen-deferministic
specifieations typically have deterministic implementations, ¢.g.,
iterating through two sets constructed in the same way may
return their clements in the same order. We use the lerm
ADINS code te refer 10 code that Assumes a Deterministic
Implemantation of @ method with a Non-deterministic
Spedification. Such ADINS code can behave unexpectedly when
the implementztion changes, even i the specification remains
the same. Further, ADINS code can lead to fiaky fests—tests
that pass or fail scemingly non-deterministically,

YWe preseat a simple technique, called NONDEX, for detecting
fiaky tests due to ADINS code. We implemented NONDENX for
Java: we found 31 metheds with non-deterministic specifications
in the Java Standard Library, manually built nen-deterministic
midels for these methods, and used 3 modified Jave Vietosd
Machine to explore various non-deterministic choices, We evalu-
ated NONDEX on 195 cpen-source projects from Gitllub and 72
studeal submissions from a programming homework assignment.
NONDEX detacted 60 Haky tests in 11 open.source projects and
110 [kakey tests in 34 student submissions,

[. INTRODUCTION

Non-determmisiic specifications arc nct uncommon for
many methods, mcluding n the standard Lbranes of many
peogramming languages. For example, the specification for the
Thject #hashoode () method in JTava can et any inlege:.
Noa-deterministic specifications 2re not restricted to simple
APls, The order n which elements of a set cre raturned by
an [erator is not-specified—It can be any crder. The order in
which entries 2 SQL wshle are retamned 1s abo sometires
nct specified—it depends on the guery. Such specifcations
give implementers more frecdom to develop vanous imple-
meatations for different goals, ¢.g., to optimize performance,
while sril’ sarsfying the specificatinn.

Even whken specificat:ons allow for nor-Ceterminism, typicel
impkmentations of such specibications are olten defermunis-
Lic, with respaot 1o centain controlled sources. For example,
thjecr #aachinde () anuld returm the same integer (if one
controls for all other sources, ¢.z.. OpenJDX Java 8 could
recurn a deterministic value on the firs: call if the under

code—is often bad. Such ADINS code can behave unexpact-
edly when the implemeniation changes, even 'f the specifica.
tion remains the same. [or example, Java code that assumes
¢ specific iterat:on order of a Hazhiet, a.g., thet 2 HazhSet
with elements 1 and 2 will be always reprasented as a string
{=. Z}ratherthan <2, 1}, 15 ADINS and not robust: the Java
implementation of He s!:Set can change such that the iteration
order of the clements changes and the string differs.

Unexpecied behavior of ADINS code can lead to fiaky rests.
which are t2s:s that s2em 10 non-ceterministically pass cr fail.
Fleky tesis are bad as they can mask bugs (pass when there are
bugs) or reise false elarms (Fail when there arc a0 bags) A test
that executes ADINS code can be feky if it assumas that some
values are deterministic even if they can change: when 1he
assumptions hold, tie test passes, but when the assumplions
do not hold, the test may fail. Not all flaky tests are duc t©
ADINN code, e.g, a fest asserting that a ale system contamng
Jtrp could pass on on2 machine but fail on another. Flaky
LIy are emerging ax an active research topic, with recent
work oa charactcrizing [25]. detecting [2), [4). [10]. [12]. [14].
[38], and avoiding [1], [22] Heky tests, However, no previous
research investigated ADINS code as = cause for flaky tests.

While flaxy te=is are an imporznt problem in software
practice and research, we also encountered them in feaciing.
Typically, the teaching staif grades students” solutions tc
programming assignments using automated tasts, These tesis
cun be Naky, and #x a resul. studenis with correct solutions may
have fziling tests, and students with incorrect solutions may
have passing tests, We discuss more deteils from one recent
course in Section IV-B, Besides educating pecple about flaky
t2sts, howw ean we hedp practitioners in the rzal world and the
students n our courses w0 detect more flaky tests faster?

We propos: a simple techmigue, called NONDEX, to detect
flaky tests due 10 ADINS code We implement NONDEX for
Yava, bor it can be easily gemeralized to any other larguage
I a nutshell, we wdentfy 31 metheds with non-detenninist.c
specifications as discussed in Secuern ILI-A, wroic models for
these methods o produce vanous non-determumstc chaices,

https://github.com/TestingResearchlllinois/NonDex

README.md

build "passing | &) build passing code climate 86 issues £ code quality

NonDex is a tool for detecting and debugging wrong assumptions on under-determined Java APIs. An
example of such an assumption is when code assumes the order of iterating through the entries in a
java.util.HashMap is in a specific, deterministic order, but the specification for java.util.HashMap is
under-determined and states that this iteration order is not guaranteed to be in any particular order.
Such assumptions can hurt portability for an application when they are moved to other environments
with a different Java runtime. NonDex explores different behaviors of under-determined APIs and
reports test failures under different explored behaviors; NonDex only explores behaviors that are
allowed by the specification and any test failure indicates an assumption on an under-determined
Java API. NonDex helps expose such brittle assumptions to the developers early, so they can fix the
assumption before it becomes a problem far in the future and more difficult to fix.

Supported APls:

The list of supported APIs can be found here

Prerequisites:

- Java 8 (Oracle JDK, Openl]DK).
- Surefire present in the POM.

Build (Maven):

https://github.com/TestingResearchIllinois/NonDex

Software Engineering in a Meme

How the customer How the project How the analyst Howx!npmm Whatmocumtno
explainened it. leader understood it. designed it.

Software Engineering in an Ancient Meme

——

As proposed by the project As specified in the project request. As designed by the senior analyst.
sponsor.

T

As produced by the programmers. As installed at the user's site. \What the user wanted.

History of the tire swing meme

https://www.businessballs.com/amusement-stress-relief/tree-swing-cartoon-pictures-early-versions/

Brainstorm: What iIs a software
process?

Why explicitly define and discuss the process?

Planning Engineering Projects

In contrast to software:

e Mechanical in nature

* Highly standardized:

e Design process
 Materials

e Construction process

]
S = =W
T -
S —— - - iy

T Y =y »

——

= = ==\

%
-\ "‘.\‘ "7“ Y

- = =\

'8 Y
"
- \

ls

1 1 |
P |
| 1

=y '-,I; |

—— LR — = . pos 30 |

from s m_c :
‘ ! l g) I

Software Process: Waterfall (~1970)

Requirements systematic, sequential approach
Validate ; Qua{ity Assurance at each phase before
Design continuing
Verify

| Implementation

Test

Operations

|

Retirement

Waterfall Model: Risk Assumptions

The cost to fix a defect grows exponentially with each development phase

Relative Cost to Fix Defect

Communication Planning Modeling Cosntruction Deployment
Phase Defect Detected

Waterfall Process Improves on Code + Fix

Requirements

Validate

 Measurable progress with risk contained in each phase
 Possible to estimate each phase based on past projects

* Division of labor: Natural segmentation between phases

Design

Verify

: Implementation

Test

Operations

Retirement

Waterfall Model adds A :
process overhead ——

Since formal quality assurance happens at
extremely detailed...

 Requirements documents
e Design documents
e Source code with documentation

o o e e : R 7 ‘:',' y' <

‘uﬂ“' VR ..V&;:‘.— i ‘;' v e!' .y . f ,_l
S s Ry i ; \ o
;‘}"v LS o F TS v 3 A ._(?--: 4“

Wlasan e ok, LASRIGED o

Waterfall Model Reduces
Risk by Preventing Change

Traditional waterfall model: no way
to go back “up”

“There are two ways of constructing a software
design: One way is to make it so simple that there
are obviously no deficiencies and the other way is
to make it so complicated that there are no
obvious deficiencies.”

Waterfall Model: Applications

 What projects would this work well in?
* Projects with tremendous uncertainty
* Projects with long time-to-market

* Projects that need extensive QA of requirements
and design

* Projects for which the expense of the planning is , , , , , ,
worth It Communication Modeling Deployment
» Classic examples: military/defense Phase Defect Detectec

 Warship that needs to have component interfaces last 80
years

 Spacecraft?

Relative Cost to Fix Defect

Waterfall Model: Wasted Work Product

* Wasted productivity can occur through each
phase’s QA process:

 Requirements that become obsolete
» Elaborate architectural designs never used

* Code that sits around not integrated and tested in
production environment, eventually discarded

 Documentation produced per requirements, but i -~ o
never read ommunication odeling eploymen

Phase Defect Detected

Relative Cost to Fix Defect

 What if we could eliminate that waste, and reduce
the cost of defects later in development cycle?

 Example: with shorter time-to-market?

Waterfall Variation: Iterative Process (~1980s)

Initial Concept

Requirements | T Next Iteration
and Iteration | ;
Planning Design and |
Implement Acceptance
Testing
and Delivery

Operations

The Agile Model Reduces Risk by Embracing Change (~2000)

”Big risk” (Waterfall)

Relative Cost to Fix Defect

“Less risk” (Agile)

Communication Planning Modeling Cosntruction Deployment

Phase Defect Detected
— Waterfall — Agile

Agile Recognizes that
Long-Term

Planning is Hard.

Note: The cone contains the probable path of the storm center but does not show ’”@

the size of the storm. Hazardous conditions can occur outside of the cone.

.. r.*,
,, .
B

N S W

‘

, GIIPA

4 '-l.' "_‘ :r—-—\-——-k

Hurricane Ida Current information: x Forecast positions:

Saturday August 28, 2021 Center location 27.2 N 88.0 W @ Tropical Cyclone Q Post/Potential TC
10 PM CDT Advisory 11 Maximum sustained wind 105 mph Sustained winds: D < 39 mph

NWS National Hurricane Center Movement NW at 16 mph S 39-73 mph H74-110 mph M > 110 mph

Potential track area: Watches: Warnings: Current wind extent:
&Day 1-3 Day 4-5 Hurricane I Trop Stm [Hurricane [l Trop Sim [Hurricane | Trop Stm

Agile Empowers Workers to Improve
Processes: Toyota Production System (1990’s)

28

Agile can be a buzzword

Deloitte.

2(16 Delcitte Consiiting Pty Ltd.

The Agile Landscape v3

Ceveloped by Christopher Webb

Scaled Agile Framework (SAFe) Disciplined Agle o .
(: i il Rightshifti Management 3.0
i : olio WSIE Agle Architectural AT ; = : o : . e ,
.C S Of 3 L(’r‘(’{'_. :Cf]l‘_u._o ;’IS_’ Ag"(A'("\-':’:\.la & §['(3C<\;'. Alﬁ' 2 ,\SH:Q '—‘.’:}.,.va! | & versions er‘S SO.'\"-\]rc |4.’-::(|d :'OC\OC: Af(r Tecure ﬂRS(value . Marsha 4 Mingsots um &)]c/\‘nor udos Medders '.0 \Ao._.v,:;
Aqg . Frf?r'.o 0, Backlog portfolio runway Theme Budgel Paterns Phnning f lifecycie Delivery Develcpment waterfall Mgm: Team Drivencycie : Model upthe Poker Cards (chasge Intrinsic Motivars
G e o Program Date Cortext pacuces feam : gsed €ara game) cesires
Canm Increment Framework -
Communites R :
O Dm0 O e e Cirritcs. " SR Dl Sl |
Organise Top down Feauure BAe: Scrum Improvemen: Feature Overal SUXAVEIOR e 2, -
Cia & g - . Planning ! Parale Gad Cengraphizaly .
by + Bottom team QProduct ¢ Service Teams Retrospective Sorint Irdepandant Diagram G DUted : - o
customer Up adoption QOwrer 3crums s ’ , caling L Tesing . developmart : eaaersnip 7Tests Schneider Theory X . Colaboration,
viue map . 3 levels coadhing {org team, tech) Sh f°é":"t_’°’{ Business EPIC 1GOD) ' farew Culire Theory ¥ Culuvation, axd
& ppable Procu ‘ . model Model Competence
] T O AR R SR S RN SR Vo el s R S L e S e I (oA Tt M S U LR e SO T [R A e Pt Dt L e < LR PO i SN AR et S Sl iy et AN
2 LargetEnnermsec Architectura ' :
Scaled Soum (LeSS) . O e e) EPKC | ming Theory of C :
Muiti-team Vision Contract -Ca.sc Casual 5 Dysfinctions of tean 0 O O O N O O O O O O : O
design Page Game jeffec Loop LA ; v i g o
workshop wdiagrams Diagrams Viable Minimum ' Al ADKAR Survey l TOC Poisson Plant Tyoes Team ImprovementExpioratony, v anamal & °
: Product | Visble Change | hiking Cumulative eNpS KATA Days ~1ciondbel 1 gomg
0O R L\ B oo e Dewibuon |
' > < ey H H
| bSO ¥ o} Wo Mo Mife I fifo e -
“, d : ’O'I'Q'V ow ' 3 S gs
b;,t,‘.}_,.;c é"ﬁ,’j’ﬂ‘iﬁlﬁ O page Object 1SNID UM Dorain B ?J"cr 5 Whys 8 Wastes taizen Cazen PDCA :
Design Thinking (Framewo'k framewors) C'—ej'”- sequirement (*) Relational grincipies Diayam Chject Mgmt burst plitz ([Deming cy-le)
‘ocal precedes did) i feea \eopogy ¢ S hey D [Kanban | :
™ v ' . & . :
asestion ! ! Feature naming Constrairts () & & & ()= O
O ' O ger Team U ' tempiate Limit WP . v . 2al Mud i
ypohesis Value stream Voice of S HaR 3 ooty Sua waste 3 bin Make Muri Lead : Cycle time
!deao Statement mapcisg Cestomer Procuct Development (FLOW) BESiie &waiirg sysem Policies oy tne :
. = : g H Explicit i : T T
Design Cofanoration @ a8 & & () 00T O : DevOps
8 c_-—' LOLSION ow LONTo .
' Low Decision Product Personas Rules o) ® e : Consnuous
bl R Ta s Te o 3 1y O ’ (¢ -) - ® A PAA
Lo - S L T L i wouren _Gove | Pracin esin
' Prototy ' G \ O . feedoack cxpenmentaily .
N . r n . .
Divergent / Bcaironmin pich) it oops -
Corvenrgent . ad S Foature Sc‘_\' [comned ~\Deinition of Ready L H
Thinking . veruda, horzonia’) Caly Tack . Auto-scale & Heal
—c's;if aive | Comext Relational P : Meetng 30ard :
Top § {idcas) Maogng () Maonng Maoging . ' g b :
. ¢ ' Refnement Cptima Festure Teggling
6 Lovels of JIT Medel Sigple CRC Cards Susta 1.1 e Metphor Spikes Tearm 2GR Meeting Batcn :
, f N mir P " Y Sy v
'\‘("Yy--h}'ﬁ :'a"("r\‘: Stormi - an Dl}\(} Product INVEST S"C Y Fast Feagdback Sizes .
. -~ N i aoinal Sy .
Stakehadder . sacoenng : C‘ﬁ' . S £ Caanal s .
Mappng ‘ B Scrum
..- Cardsont - Programming o Feedback JIT =<mal
" () : . ® Fotaticn UNSPE oo Ad-Hcc | releases
Cesiyn : ' Customer ® g
Princides . Hackathon | "0t Sorimt 1 Aglle Re ease
' 'VQ"Y' : 3‘)((‘00 Dllrlf‘ r‘-" . . > T'a ns (AQT-
\} H o = - L
- : (182} : S'II’ZO
ting INCEX :O O z Relative Ee%icnar - Arceptance Source Coninug ¥ !
Five E's) . Tasting ® () { . . estimates | soker Felative EstimatioN™) acceptance 7 anso! Conlext Test A Te&:c\;” Cmc-n frie":;tg: et | () B'c;:ac
22 Marix Joume : o ' Time Panning Criteria context Driven TEme <
.,Lps‘y Guided Defne Facilitated Doblin's 10 Deveiooment O box Aefacroning deiven & riociel] Mgt Enginee
Stony . “ Tour Success workihops types of aperoach veloay e v .
ellire () seic ' innavation "ei"w‘or' Marick's Test Driven : C NNUOU
tellirg SPICE : : O O R Test Develooment . Deploymert
._. : C D‘l g("‘; O Qovert Refartanng Jocument fetrospedtive uéﬂquvm . s Tes O il Relesse on
ontrol Pac pre N Drarad st i e \ 4 t | rand
Busness Busness Dynamic System Development Method (DSOM) Map % i :zscm vonte Autcmationl Avtomaled ‘ .
- - v L] vt ’VL".‘ LA we :
Model ision Q ON"O' Niko ") (Showcase) Caro o
Canvas BAA . A— B A— A 58 O O O j Caerdar g N e . Confg ! O Onu*vm'cc‘ visual
| Feasiviity Proeqt BUSBESS sk Log De verr Baselired Solution § Mastow : et N O* —O* O *‘Of‘ Marrt : 1 dashboard
| Assessrory 3Pedach Case Plan Requirements Architectu® | independent 5 Mikadc EROVEme K \iorcior ESies oI 9T Dl
' " quesyonnair « | Goa Nawely Focusing Dependency 2 Z | LUTSI0N - Antefact Standardisedhtegrate o L
it s « v Goal Nawety O : pencency leflection Cumutative (YComtrol mamt Proametion Togtin Ep'-'rcwhcﬂts
- - -+ : Steps Map '.'.Icokshops Flow 9 Ptk 9 H
« I13C€ O ; 2¢1 View Emegin Update when User : : . 3'{)‘;76”" Componentsed ath . H
. S r‘crs : = Ve 4 g o = 1 3 e - : »""CHIZOC(I.’G H R a’*:" r‘{;
e ¢ drchitecture Desgn thuts Case g % : <n.-.w-a'
. - code = v e > 2 2 Autometed Test § i
" : crafisranship) ' Code (overage ‘{rr'.L.‘ta' on
. ' ‘ " Aol : "
. : Osmous Ireremensal v Focus Scae Walking Delphi Information Exploratory Incremental Team Safety COEL :
; Commyunication Ka-architecture i Feriod methoc oy Skele1on estmation Radiators 360 cegree Architacture ate [user method : “O
; P @h colow e reviews space schution) selection P Mock Objects
initiate ; Discover : Deliver : Release

Graphic © Christopher Webb

What is a good software engineering process?
Disclaimer: Software Engineering is full of opinions

“Any fool can write code that a computer can
understand. Good programmers write code that
humans can understand”

- Martin Fowler

Agile Manifesto

We are uncovering better ways of developing
software by doing it and helping others do it.
Through this work we have come to value:

Individuals and interactions over processes and tools

Working software over comprehensive documentation
Customer collaboration over contract negotiation
Responding to change over following a plan

That is, while there is value in the items on
the right, we value the items on the left more.

https://agilemanifesto.org

Continuous Improvement is a Key Agile Value

o “Collective ownership”

* Functional and non-functional correctness is checked on the cheap, and
often

 Regular checkpoints to evaluate the efficacy of the process and solicit
Improvements

Example Agile Process: XP

Building Software For Shifting/Unknown Requirements

"The development of a piece of software changes its own
requirements. As soon as the customers see the first release,
they learn what they want in the second release...or what they
really wanted in the first. And it's valuable learning, because it
couldn't have possibly taken place based on speculation. It is
learning that can only come from experience. But customers
can't get there alone. They need people who can program, not
as guides, but as companions.”

- Kent Beck, in “eXtreme
Programming eXplained”

Agile Practice: Small, Continuous Releases

Checking correctness and quality of the complete system

o System 1S pUt INto 100% production
production before solving
the full problem — new
releases that add value
happen fast (monthly, daily,
hourly...)

 Multiple release phases for
fast-feedback

Sandcastb et | |11 [([(1T [T [-

e Morein weeks 8 & 11

https://engineering.fb.com/2017/08/31/web/rapid-release-at-massive-scale/

https://engineering.fb.com/2017/08/31/web/rapid-release-at-massive-scale/

Agile Practice: Code Review

A Formal Process

* A code review is the process in which the author of some
code is asked to explain it to their peers:

 \What purpose the code has;

« How the code accomplishes this purpose;

e How the author is confident of this information,
* E.g., show results of running tests (Cl results)

* A code review often concerns a code change (“diff”)

SE Research Question: Why Do Code Review?

Ranked Motivations From Developers
Top Second Third S

| | | |

Finding defects -
Code Improvement _
Alternative Solutions _

Knowledge Transfer

Team Awareness

]
]
Improving Dev Process -
]
L
[

Share Code Ownership

Avoid Build Breaks

Track Rationale

Team Assessment -

0 200 400 600
Responses

“Expectations, Outcomes, and Challenges of Modern Code Review”, Bacchelli & Bird, ICSE 2013

SE Research Question: Does Self Review Detect all Defects?

Study of 300 reviews at Cisco in 2006

% Effect of Author Preparation on Defect Density

o0
o

~J
o

S

S

<

Average Defect Density (Defects/kLOC)
=

N W
<

—
<

0

Without Preparation With Preparation

Even if developers pre-review their code, many defects still found in peer review

“Best Kept Secrets of Peer Code Review”, Jason Cohen, SmartBear Software, 2006

Topics we’ll address this term

» Software Process

 Modularity and Design

* Mining Software Repositories and Open Source Culture
» Testing, Continuous Integration and Devops

* Expertise and knowledge sharing

e Security

o Software engineering in specific domains

Paper Reading Advice

* Note: Might need to re-read an article multiple times, especially if you are not familiar with background material
* As you read, consider the following questions:
1.What is the motivation for this work?
2.What is the problem that is being solved?
3.What is hard about that problem?
4.What is the proposed solution?
5.How is that solution achieved?
6.How is that solution evaluated?
* After reading, reflect:
1.1s this a problem worth solving?
2.ls the solution a good idea?
3.Do you see limitations to the problem, or the solution?
4.1s future work needed to fit this research prototype into the real world problem domain?
5.What questions does this paper leave you with?
 More advice at https://cseweb.ucsd.edu/~wgg/CSE210/howtoread.html

https://cseweb.ucsd.edu/~wgg/CSE210/howtoread.html

Topic Interest Poll/Discussion

