Testing - Input Generation
Techniques

Advanced Software Engineering
Spring 2023

© 2023 Jonathan Bell, CC BY-SA

http://creativecommons.org/licenses/by-sa/4.0/

Agenda

Adminsitrivia: Reminder, project proposal
Review testing so-far
Poll

L ecture/discussion: test input generation

Review: Tests as Inputs + Oracles

* |nputs:

* Arguments on command line

State Change

. Files E

Inputs System Outputs
* Network
° USGF Behavior

« Randomness

Review: Test Oracles and Pseudo-Oracles

What is “correct” behavior?

Test oracles

- Example-based: “For a given input, some assertions should be true”
* Properties: “All inputs in some class should satisfy some property”

* “It doesn’t crash”

» “Changing the input in some way should maintain the same output”
* Regression: “It provides the same output as it used to”

- Differential: “Two systems implementing the same spec should provide the same
output”

« Human oracle: “For a given user, they should be satisfied”

Review: Mutants as a Valid Substitute for Real Faults

Mutation Analysis Tests the Tests

Idea: What if many (real) bugs could be represented by a single, one-line “mutation” to the program?

public contains(location: PlayerLocation): boolean {

return (
location.x + PLAYER SPRITE WIDTH / 2 > this. x &&
location.x - PLAYER SPRITE WIDTH / 2 < this. x + this. width &&
location.y + PLAYER SPRITE HEIGHT / 2 > this. y &&
location.y - PLAYER SPRITE HEIGHT / 2 < this. y + this. height

)

}

Correct code for “Contains” check in Covey.Town

public contains(location: PlayerLocation): boolean {

return (
location.x + PLAYER SPRITE WIDTH / his. x &&
location.x - PLAYER SPRITE WIDTH / 2 his. x + this. width &&
location.y + PLAYER SPRITE HEIGHT / 2 > this. y &&
location.y - PLAYER SPRITE HEIGHT / 2 < this. y + this. height

)

}

Mutated (and buggy) code for “Contains” check in Covey.Town

Review: Assertions help
detect bugs

Likely assertions might help
developers add assertions to code

“Dynamically discovering likely program invariants to support program evolution” Ernst et al, ICSE 1999
https://doi.org/10.1145/302405.302467

15.1.1:::BEGIN 100 samples

N = size(B)
N in [7..13]
B
All elements >= -100

15.1.1:::END 100 samples

N=1I=N_orig = size(B)
B = B_orig
S = sum(B)
N in [7..13]
B
All elements >= -100

15.1.1:::L00P 1107 samples

N = size(B)
S = sum(B[0..I-1])
N in [7..13]
B
All elements in [-100..100]
I in [0..13]
sum(B) in [-556..539]
B[0] nonzero in [~99.:.96]
B[-1] in [-88..99]
B[0..I-1]
All elements in [-100..100]
I <= N

Negative invariants:

N !'= B[-1]
B[0] '= B[-1]

(7 values)
(7 values)
(100 values)
(200 values)

(7 values)
(100 values)
(96 values)
(7 values)
(100 values)
(200 values)

(7 values)
(96 values)
(7 values)
(100 values)
(200 values)
(14 wvalues)
(96 values)
(79 values)
(80 values)
(985 values)
(200 values)
(77 values)

(99 values)
(100 values)

Figure 2: Invariants inferred for Gries program 15.1.1 over 100
randomly generated input arrays. Invariants are shown for the be-
ginning (precondition) and end (postcondition) of the program,
as well as the loop head (the loop invariant). B[-1] is shorthand
for B[size(B)~-1], the last element of array B, and var_-orig repre-
sents var’s value at the start of execution. Invariants for elements
of an array are listed indented under the array; in this example,
no array has multiple elementwise invariants.

https://doi.org/10.1145/302405.302467

Review: Use Equivalence Classes to Generate Inputs

What is a “good” test suite?
Interpretation: Coverage of Input Space

+ (Manually) enumerate possible “equivalence
classes” of inputs

* Ensure that each equivalence class is covered ‘A
by a test

» Pay extra attention to boundary cases

If the program works for input A, it will probably work for input B

& Respond at pollev.com/jbell

2-14 Test input generation

0 done
0 underway

Pawered hv ‘h Pall Fvervwhere

Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app

& When poll is active, respond at pollev.com/jbell

Did you think it was "surprising" that random testing found

bugs in unix™ utilities?

Yes

No

Total Results: 0

Pawered hv ‘h Pall Fvervwhere

.. Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app -.

Do you think that the fuzzing paper was really inspired by

""a dark and stormy night" with a dialup connection?

Join by Web

0 Go to PollEv.com
€) Enter JBELL

O Respond to activity

© Instructions not active. Login to activate

Total Results: 0

Pawered hyv ‘h Pall Fvervwhere

B Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app

& When poll is active, respond at pollev.com/jbell

Have you used any of these dynamic analysis tools for C

before?

Valgrind

Address sanitizer, Memory Sanitizer
Thread Sanitizer
UndefinedBehaviorSanitizer

| try to avoid programming in C, so | definitely haven't used these tools for C

Total Results: 0

Pawered hv ‘h Pall Fvervwhere

.. Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app -.

Spot the bug

char inputPassword[BUFSIZE];

char realPassword[1l7];

strncpy(realPassword, "mySecretPassword", 17);
gets (inputPassword) ;

Sidebar: 1990’s Cultural Reference [2,3]

g PR Y b T :~'. & ot ‘
thenr 2!Jnl.\a- l:rlme WAsTrurio

WITED BRTISTS PCTURES et 1 SOFTLEH v BACHES™ 2000 LEEMORAER. AOSELTRIOURSPRNEHSTIOERS o ORRRMEEACLD u.,muufu,L mw
w (e J””' 3TN0 o P g MC () SEHEUR cxseation prote oo T SOFT l[lu;.-u,m T RPT ooy B Ll” L
ity MHCYREL PEYSER RALPA MATER wrecverts IR SCETLEY <

Computer Fraud and Abuse Act of 1986

Robert Morris
MIT Professor
Y Combinator Co-Founder

1995 Movie with Jonny Lee Miller and Angelina Jolie

What testing strategy will find this bug?

Assume: we have a perfect oracle for detecting buffer overflows when they occur

char inputPassword[BUFSIZE];
char realPassword[1l7];

strncpy(realPassword, "mySecretPassword", 17);
gets (inputPassword) ;

It was a dark and stormy night

“Fuzz testing”

» (Generate a continuous string of random (?) characters
* Printable only
* Printable + control characters
- Also with/without null byte characters

» Options to specify: Length of input, random seed

* Inputs are files, or for interactive applications, Ptyjig

» Oracle - program crash or hang

Sidebar: Unix™

Reminder - OSS discussion

ecurity policy loaded: Apple Mobhile File Integrity (AMFI)
alling mpo_policy_init for Sandbox
ecurity policy loaded: Seatbhelt sandbox policy (Sandbox)

alling mpo_policy_init for Quarantine
ecurity policy loaded: Quarantine policy (Quarantine)
, an opyright (c) 1982, 1986, 1989, 1991, 1993
The Regents of the University of California. HLL rights reserved.

n -
Sllde SUbtltIe AC Framework successfully initialized

1IsSing 163849 buffer headers and 10290 cluster 10 buffer headers
pplekKeyStore starting (BUILT: Sep 19 26014 80:11:38)

BSD Copyright in OS X boot sequence

 1978: UC Berkeley begins distributing their own derived
version of Unix (BSD)

» 1983: AT&T broken up by DOJ, UNIX licensing changed:
NO more source releases

* Also 1983: “Starting this Thanksgiving | am going to
write a complete Unix-compatible software system
called GNU (Gnu’s Not Unix), and give it away free to
everyone who can use it”

GNU logo (a gnu wildebeest)

Evaluating Random lesting

Generating random inputs is “surprisingly effective” at finding bugs in Unix™

- 88 utility programs, 6 operating systems, 109 crashes/hangs in total
» Why are there so many buggy programs in Unix??

* Do the “comments on the results” apply similarly today, and how?

Beyond Random Testing

How do we generate an inputi that reveals the crash?

void magic(byte 1inputl){
1f(inputl == 45){
crash();

}
}

volid magic2(byte inputl, byte 1input2){
1f(inputl == 45){
1f(input2 == 36){
crash();

}

Test Input Generation Strategies

Code-based

Model/requirements-based

Symbolic execution Random

landom with feedback

“White box” (We look at the code) “Black box” (We do not look at the code)

Beyond Random Testing

vold magic2(byte inputl, byte input2){

« Symbolic execution: for each input, if (inputl == 45){
represent it as a symbolic value if(input2 == 36){
(instead of concrete number), then crash();
detect constraints on inputs, create }
and solve logical formulas to get }
iInputs }

» Random fuzzing, but with some hints:
“The numbers 45 and 36 seem lucky”

» Random fuzzing, but with guidance:
“Using 45 as input1 seems
Interesting”

Feedback-Guided Fuzzing

vold magic2(byte inputl, byte input2)/{

if (inputl == 45){ / /Bl
if(input2 == 36){ //B2
crash(); 0 0 F
}
} 10 63 F
’ 45 0 T F
14 0 F
415 100 T F
45 36 T T

Feedback-Guided Fuzzing

Overview

Select input p— \|utate input

from corpus
t Tl el I
0 0

e, g oo)
10 68 F
45 0 T F
[A S Al 14 0 F
lf(lniﬁzzhj;%){ / /B2 45 100 T =
) 45 36 T T

Feedback-Guided Fuzzing

Design goals: AFL

« Speed - fuzz at native speed

» Rationale: worst-case should never be worse than brute force
 Reliability - avoid complex instrumentation

- Rationale: Instrumentation is brittle
» Simplicity - limit number of knobs provided to users

- Chainabillity - make it easy to interact with fuzzed applications

AFL Tracks Edge Coverage

“Interesting” inputs reveal new edges, or new coarse hit counts

(ENTRY)

A l

char[] result = new char[input.length - 2 « count(input, '%")];
int size = 0:

N

W

Input 1: A->B->G
Input 2: A->B->C->D->F->B->G
Input 3: A->B->C->D->F->B->C->D->F->B->G

AFL Selects Inputs with Heuristics

» Some inputs might cover a superset of what others
cover

» Some inputs might be longer to run, or are just
otherwise larger

» AFL prefers inputs that are faster, favoring those that
cover the same or a superset of branch edges in less
time

Select input b

from corpus

Mutate input

t

If interesting, '

save 1o corpus

'

| Execute input

AFL has several mutation strategies

. Select input .
» Deterministic bit flips oo =P Mutate inpu
- Addition and subtraction of small ints *

: : : If interesting, | Execute inou
« Swap integers for interesting values (-1, 256, etc) save to corpus [€ | Execute input

- Stacked random tweaks (multiple at a time)

» Splice multiple files together

AFL Remains Popular/Effective

“AFL++”

Incorporates many individual improvements over past decade

Fuzzer

7 -
e afl
e afl++
6 - e aflfast
fairfuzz
B honggfuzz
5 - B moptafl
‘ symccafl
©
o
o 4-
o))
o
—
}_
n 3- l
o
-
m ’
) H
0 -
libpng libtiff libxml2 openssl php poppler sqlite3
Targets

“Magma: A Ground-Truth Fuzzing Benchmark” Hazimeh, Herrera and Payer. Proc of ACM on Measurement and Analysis of Computer Systems, 2021
https://doi.org/10.1145/3428334

https://doi.org/10.1145/3428334

Challenges/risks that come with fuzzing

Aside from “how to generate the inputs”

» How to de-duplicate bugs? 100’s of inputs might trigger the “same” bug
* How to minimize failure-inducing inputs?

* How to know when we are done fuzzing, and how much resources to commit?

How SQLite is Tested

Core test harnesses

° “TCL”
« “TH3” (licensed)
» SQL Logic tests - differential testing

» dbsqlfuzz - proprietary fuzz tester, inputs are database file and query

SQLite tests environmental inputs

“Anomaly Testing”

» Out of memory errors
» |/O errors

« Crashes

SQLite has 100% branch and MC/DC coverage

» “Defensive” programming concerns

» Why is the test suite run three times for coverage”?

vold assert(booolean wvalue){
if (value){ //Should not be reachable
crash();

}

SQLite uses Dynamic Analysis with Tests

Additional runtime checks for invalid behavior

» Assertions

» Valgrind

* Memsys?2

» Journal assertions

« Undefined behavior checks

Sanitizers Help Detect Bugs, but Aren’t Free
Address Sanitizer/Contiki-NG plP case study

Table 3: Number of times and mean time-to-exposure (HH:MM:SS) for the seven vulnerabilities in the code base of yuIP.

Id AFL-gcec AFL-cf MOrT Honggfuzz Angora OSym Intriguer SymCC
uIP-overflow 10 00:17:20 10 00:35:40 10 00:03:00 0 D 10 00:53:29 10 00:23:59 10 00:49:58 10 00:01:39
uIP-ext-hdr 10 03:32:17 10 03:23:20 10 00:12:11 10 00:50:12 10 02:44:41 10 00:57:23 9 05:05:31 10 00:11:35

uIP-len 5 06:59:39 0 6] 4 (09:03:11 0 D 5 08:48:08 5 04:45:32 3 01:24:00 1 01:35:04
uIP-buf-next-hdr 0 @ 0 @ 0 ® 0 ® 0 ® 0 @ 0 @ 0 ®
uIP-RPL-classic-prefix 6 06:21:52 2 18:52:46 7 03:57:22 0 O 6 09:55:47 10 05:14:50 2 07:11:56 0 C,
uIP-RPL-classic-div 7 10:46:12 & 11:09:41 8 07:35:17 4 16:52:41 4 10:54:35 5 08:05:55 3 01:25:26 & 06:00:12
uIP-RPL-classic-sllao 0 O 0 ® 0 C) 0 ® 0 ® 0 @ 0 C) 0 ®

Table 5: Number of times and mean time-to-exposure for the yIP vulnerabilities using AddressSanitizer instrumentation.

1d | Al'L-gcc Al'L-cf MOpT Honggfuzz | Angora QSym Intriguer SymCC
ulP-overtlow 8 00:17:24 10 00:34:34 10 00:19:53 0 @ 10 00:48:04 10 00:15:08 10 00:37:30 10 00:31:03
ulP-ext-haor 10 05:15:10 10 02:30:14 10 01:20:44 10 01:11:22 10 02:17:21 10 01:53:00 10 03:33:16 10 02:38:00
ulP-len 0 D 0 @ 0 @ 0 @ 0 (O 0] 0 D 2 11:57:49
uIP-RPL-classic-prefix 2 13:25:17 0 ® 2 21:5818 0 @ 1 03:59:56 1 08:19:18 0 ® 1 17:06:14
uIP-RPL-classic-civ 0 D 0 @ 0 O 2 09:50:03 1 02:41:05 0] 0 D 0 C

Table 6: Impact of AddressSanitizer for the vulnerabilities in the code base of yIP. The table shows performance differences
from Table 3: a positive impact is denoted with an upward arrow (4) and negative impact with a downward arrow (¥). An
integer denotes the change in the number of trials exposing the vulnerabhility; for similar number of trials the time difference
is shown. A number of trials and a time denote vulnerabilities that a fuzzing tool exposed only on the sanitized code.

Id | AFL-gee AFL-cf MOrpT Honggfuzz | Angara QSvm Intriguer SymCC
uIP-overflow v 2 A 00:01:06 ¥ 00:16:53 — A (OD:05:25 A ON:08:51 A 0D:12:28 v 00:29:24
ulP-ext-hdr v 01:42:53 A 00:53:06 v 01:08:33 Y 00:21:10 A 00:27:20 v 00:35:37 A 1 v 02:26:25

ulP-len v 5 — v 4 —) 4 5 v 5 4 3 A 1
ulP-RPL-classic-prefix v 4 Y 2 v 5 — Y 5 v 9 Y 2 A 1
UIP-RPL-classic-div v 7 4 6 v i Y 2 4 3 J 5 4 3 J

“So Many Fuzzers, So Little Time: Experience from Evaluating Fuzzers on the Contiki-NG Network (Hay)Stack” Poncelet, Sagonas and Tsiftes, ASE 2022
https://doi.org/10.1145/3551349.3556946

https://doi.org/10.1145/3551349.3556946

Sanitizers Help Detect Bugs, but Aren’t Free
Effective Type Sanitizer/Contiki-NG ulP case study

Table 3: Number of times and mean time-to-exposure (HH:MM:SS) for the seven vulnerabilities in the code base of yuIP.

Id AFL-gcec AFL-cf MOrT Honggfuzz Angora OSym Intriguer SymCC
uIP-overflow 10 00:17:20 10 00:35:40 10 00:03:00 0 D 10 00:53:29 10 00:23:59 10 00:49:58 10 00:01:39
UIP-ext-hdr 10 03:32:17 10 03:23:20 10 00:12:11 10 00:50:12 10 02:44:41 10 00:57:23 9 05:05:31 10 00:11:35

uIP-len 5 06:59:39 0 6] 4 09:03:11 0 D 5 08:48:08 5 04:45:32 3 01:24:00 1 01:35:04
uIP-buf-next-hdr 0 @ 0 @ 0 ® 0 ® 0 ® 0 @ 0 @ 0 ®
uIP-RPL-classic-prefix 6 06:21:52 2 18:52:46 7 03:57:22 0 O 6 09:55:47 10 05:14:50 2 07:11:56 0 C,
uIP-RPL-classic-div 7 10:46:12 & 11:09:41 8 07:35:17 4 16:52:41 4 10:54:35 5 08:05:55 3 01:25:26 & 06:00:12
uIP-RPL-classic-sllao 0 O 0 ® 0 C) 0 ® 0 ® 0 @ 0 C) 0 ®

Table 9: Number of times and mean time-to-exposure for the pIP vulnerabilities and EffectiveSan instrumentation.

1d | AFL-clang AFL-cf MOpt Honggfuzz Angora QSym Intrigner SymCC
uIP-overflow 10 00:10:49 10 00:09:19 10 00:16:19 0 ® 10 00:06:07 10 00:14:56 10 00:20:15 10 00:05:52
uIP-ext-har 10 01:03:07 10 03:35:05 10 00:24:04 0 ® 10 00:42:26 10 01:15:08 10 00:35:02 10 00:24:05
uIP-len 10 00:44:24 0 ® 10 00:25:34 10 04:06:35 10 02:29:14 10 02:02:46 10 02:01:25 10 00:17:42
uIP-buf-next-hdr 2 12:47:46 0 @ 3 08:36:57 0 @ 1 01:52:32 2 00:29:24 2 07:13:00 7 06:41:59
UIP-RPL-classic-prefix 0 c 0 @ 3 132830 0 @ 0 @ 2 04:51.57 2 13:23:10 5 03:22:02
uIlP-RPL-classic-div 3 22:04:40 0 @ 3 192727 0 @ 2 04:29:34 1 02:31:07 2 18:44:25 6 08:33:54

Table 10: Impact of EffectiveSan for the vulnerabilities in the code base of yIP (differences from Table 3).

Id | AFL-gee/-clang AFL-cf MOpT Honggluzz Angora DSym Inlriguer S¥mCC
uIP-overflow A 00:06:31 A 00:26:21 ¥ 00:13:19 A 00:47:22 A 00:09:03 A 00:29:43 ¥ 00:04:13
UIP-ext-hdr A 02:29:10 ¥ 00:11:45 ¥ 00:11:53 4 10 A 02:02:15 Y 00:17:45 A 1 v 00:12:30

ulP-Llen A 5 - A 6 A 10 A 3 A) A 7 A 9
UIP-buf-next-hdr A 2 - A 3 - A 1l A 2 A 2 A 7
uIP-RPL-classic-prefix v 6 v 2 \J 1 A4 6 4 8 v 0¢:11:14 A >
UIP-RPL-classic-div ¥ 4 v 6 n Y 2 4 2 Y 4) 4 | ¥ 02:53:42

“So Many Fuzzers, So Little Time: Experience from Evaluating Fuzzers on the Contiki-NG Network (Hay)Stack” Poncelet, Sagonas and Tsiftes, ASE 2022

https://doi.org/10.1145/3551349.3556946

https://doi.org/10.1145/3551349.3556946

Fuzzing Structured Inputs

Example: Find bugs in C compilers

» Motivation: bugs in C compilers can be devastati

» The oracle Is “easy”: compare behavior across
optimization levels and across compilers and

versions

» Generating inputs to find those bugs is hard

« Undefined behavior

» Atypical code may be under-represented In

developer test suites

“Finding and Understanding Bugs in C Compilers” Yang et al, PLDI 2011

https://doi.org/10.1145/1993316.1993532

» N -

[T SN

Finding and Understanding Bugs in C Compilers

Xuejun Yang Yang Chen

Eric Eide John Regehr

University uf Uiah, Schocl of Computing
{ xyang. chanyang cede, ragahr k@os.utah edu

int foo (void) {

signed char x = 1;
unsigned char y = 2585;
return x > y;

Figure 1. We found a bug in the version of GCC that shipped with
Ubuntu Linux 8.04.1 for x86. At all optimization levels it compiles
this function to return 1; the correct result is 0. The Ubuntu compiler
was heavily patched; the base version of GCC did not have this bug.

1. Infroduction

The theory of compilation 1s well developed, anc there are compaler
framesworks it which many opamizetions have been proved correct.
Neverthe ess, the prictical art ol compiler construction invelves a
marass of trade-otls between comptlaton speed, code quality, code
debuggability, compiler modularity, compiler retargeteb:lity, and
other goals, 15 should be ro surpnsc that optimzing compilers—Iike
all complex softwere svsiems—contain bugs,

Miscompt'ations often happen because optimization safety
ckecks are inadequate, static ana'yses are unscunc, or transfor-
matioes are Aawed. These bugs are out of reach for current and
fiture automated program-venifcation tools because the specifica-
ions that need 0 be checkad were never written down in o precise
wity, il they were willen down at all, Where verification is impeac-
tical, however, other wethixds fo improving compiler quality can
suceeed. This paper reports our experience in using testing (o make
C compilers better

Promiccion fa mac> digital oc haed copes of all oF pa af this wark far personal oF
clessroon 252 is graeted without fee providad thet copics ase not made ce distribaned
for profit o comovercial sdvamage and tha 2opies bear this natiz> and the Tl ciration
» the first page. To copy cthzwise, to cpublish, 10 post en servers of o redist-dbute
o Insly, mpsves orker spedilfic perry ssion aaslho @ ee.

LD Janz -8, 2011, Sem Jose, Cailomis, USA.

Copynght (€ 2011 UM U2 1 4303 0663 8/ 1105, S10.00

FOr W PUST TTes Yerrs, W SEa CSIIT Ty are]
11 C compalers, Uur resulls are perhaps surprising in their extent: Lo
cate, we have found and reaerted more than 325 bugs in mainstream
C compilers inclucing GCC, LLVM, ard commercial tools, Figare |
shows a representative example. Every comailer that we have kested.
including several that ace octinely usexd to compile safety-criticzl
cemwbeddad systems, has been crashed and also shown to silently
miscompile valid inputs. As measured hy the responses to our bug
reports, the defects discovered by Csmith am= imoortant Most of

the bugs we have reported aganst GO ard LLVM have een
(e, Twenty-five of our reported GCC bugs have besr clessifiend s
Pl the maxivwm, relezse-hloecking priority for GCC defects. Our
results sugpest that fixed test suites—th2 main way tha: compilers
are testad—are an inadequate mechanism for quality conurol,

We claim that Csmith is an 2ffective bug-finding ol in pan
because it penerstes tests that explore atypical combinations of C
largaage feawres, Atypial code is net unimpostant code, how-
ever, it is simply underrepresented in fixed compiler test suites,
Developers who stray owtside the well-tested paths that represent
a compuler’'s “comfort zone™ for example by writing kernel code
or embacded systems code, using esotenc commler options, cr ou
tomatally generating code can encounter bugs quute frequently.
I'his 1= 0 signmficant problem for complex sysiems. Wolfe (301, ik
11g about independent software vendors (ISVs) says “An ISV wilh
a complex code can werk aroard correetness, tam cff the optimazer
1n one or two hles, and wsualiy they have 1o do thai for any of the
counpilers they use” (emphasis ours). As another example, the frort

https://doi.org/10.1145/1993316.1993532

Randomly Generating C Programs

Procedure

» Begin with grammar for subset of C

 Pick an allowable production from the grammar

» (Generate that production and any targets needed
» If it’s a non-terminal production then recurse

» Handle dataflow transfer through each new production, keeping track of in-
scope locals, globals etc

» Perform safety checks (avoid undefined behavior)

“Finding and Understanding Bugs in C Compilers” Yang et al, PLDI 2011
https://doi.org/10.1145/1993316.1993532

https://doi.org/10.1145/1993316.1993532

Randomly Generated C Programs Find Bugs

60

30

Distinct Crash Errors

Figure 4. Number of distinct crash errors found in 24 hours of
testing with Csmith-generated programs in a given size range

S0

40 |

20

10F

55 |-
9-18 | §i

I
s

- "
. i H
: i H
' T A
[
.
.
.
.
. - *
-— =
0
ﬂ |
b
o o+ w @ o o= @ © o o+
M © N g e o I 9 ° 3
[D R G 9 =
- ®m W & r~ S5 9% ¥ % ©
<o o w0 < w <D P~
-~ o — N -t fu)] (]
n O o o o
. ol -t v
=+]

Range of Program Sizes Tested, in Tokens

B

16385-32768 |

327689-655386 |

90 Csmith : 86 cra
g 30
w70 F
B
© 60 |
@)
o 50 F
=
D40
2 Eide0s : 33 crashes
= sy - Fmmmmm——-
o | ymmrmm——— 4
S 20§ Lindig07..20.crashes
§ ' s I —— LuamerQS_2 14 crashes
O 1 o ._‘_:{:-...-... LA LA L LR LN AN L N; IR ---..-P‘ﬁf“.%ﬁmﬁnaﬂ.?.ﬁ.ﬁﬁﬁm
0 _“-'...'l-'"'--' | | l l | |

0 1 2 3 4
Testing Time (Days)

5 6 7

Figure 5. Comparison of the ability of five random program gener-

ators to find distinct crash errors

“Finding and Understanding Bugs in C Compilers” Yang et al, PLDI 2011
https://doi.org/10.1145/1993316.1993532

https://doi.org/10.1145/1993316.1993532

