
© 2023 Jonathan Bell, CC BY-SA

Testing - Input Generation
Techniques
Advanced Software Engineering
Spring 2023

http://creativecommons.org/licenses/by-sa/4.0/

Agenda

Adminsitrivia: Reminder, project proposal

Review testing so-far

Poll

Lecture/discussion: test input generation

Review: Tests as Inputs + Oracles

• Inputs:

• Arguments on command line

• Files

• Network

• User

• Randomness

System

State

Inputs Outputs

Behavior

State Change

Review: Test Oracles and Pseudo-Oracles

Review: Mutants as a Valid Substitute for Real Faults

Review: Assertions help
detect bugs
Likely assertions might help
developers add assertions to code

“Dynamically discovering likely program invariants to support program evolution” Ernst et al, ICSE 1999  
 https://doi.org/10.1145/302405.302467

https://doi.org/10.1145/302405.302467

Review: Use Equivalence Classes to Generate Inputs

Spot the bug

char inputPassword[BUFSIZE];
char realPassword[17];
strncpy(realPassword, "mySecretPassword", 17);
gets(inputPassword);

Sidebar: 1990’s Cultural Reference [2,3]

Computer Fraud and Abuse Act of 1986 Robert Morris
MIT Professor

Y Combinator Co-Founder 1995 Movie with Jonny Lee Miller and Angelina Jolie

What testing strategy will find this bug?
Assume: we have a perfect oracle for detecting buffer overflows when they occur

char inputPassword[BUFSIZE];
char realPassword[17];
strncpy(realPassword, "mySecretPassword", 17);
gets(inputPassword);

It was a dark and stormy night
“Fuzz testing”

• Generate a continuous string of random (?) characters

• Printable only

• Printable + control characters

• Also with/without null byte characters

• Options to specify: Length of input, random seed

• Inputs are files, or for interactive applications, Ptyjig

• Oracle - program crash or hang

Sidebar: Unix™
Reminder - OSS discussion

Evaluating Random Testing
Generating random inputs is “surprisingly effective” at finding bugs in Unix™

• 88 utility programs, 6 operating systems, 109 crashes/hangs in total

• Why are there so many buggy programs in Unix?

• Do the “comments on the results” apply similarly today, and how?

Beyond Random Testing
How do we generate an input1 that reveals the crash?

void magic(byte input1){
 if(input1 == 45){
 crash();
 }
}

void magic2(byte input1, byte input2){
 if(input1 == 45){
 if(input2 == 36){
 crash();
 }
 }
}

Test Input Generation Strategies

“White box” (We look at the code) “Black box” (We do not look at the code)

Manual Manual

Model/requirements-based

Symbolic execution

Random with feedback

Random

Code-based

Beyond Random Testing

• Symbolic execution: for each input,
represent it as a symbolic value
(instead of concrete number), then
detect constraints on inputs, create
and solve logical formulas to get
inputs

• Random fuzzing, but with some hints:
“The numbers 45 and 36 seem lucky”

• Random fuzzing, but with guidance:
“Using 45 as input1 seems
interesting”

void magic2(byte input1, byte input2){
 if(input1 == 45){
 if(input2 == 36){
 crash();
 }
 }
}

Feedback-Guided Fuzzing

void magic2(byte input1, byte input2){
 if(input1 == 45){ //B1
 if(input2 == 36){ //B2
 crash();
 }
 }
}

input1 input2 B1 B2

0 0 F
10 68 F
45 0 T F
14 0 F
45 100 T F
45 36 T T

Feedback-Guided Fuzzing
Overview

Mutate inputSelect input
from corpus

Execute inputIf interesting,
save to corpus

void magic2(byte input1, byte input2){
 if(input1 == 45){ //B1
 if(input2 == 36){ //B2
 crash();
 }
 }
}

input1 input2 B1 B2

0 0 F
10 68 F
45 0 T F
14 0 F
45 100 T F
45 36 T T

Feedback-Guided Fuzzing
Design goals: AFL

• Speed - fuzz at native speed

• Rationale: worst-case should never be worse than brute force

• Reliability - avoid complex instrumentation

• Rationale: Instrumentation is brittle

• Simplicity - limit number of knobs provided to users

• Chainability - make it easy to interact with fuzzed applications

AFL Tracks Edge Coverage
“Interesting” inputs reveal new edges, or new coarse hit counts

A

B

C

D E

F

G

Input 1: A->B->G
Input 2: A->B->C->D->F->B->G
Input 3: A->B->C->D->F->B->C->D->F->B->G

AFL Selects Inputs with Heuristics

• Some inputs might cover a superset of what others
cover

• Some inputs might be longer to run, or are just
otherwise larger

• AFL prefers inputs that are faster, favoring those that
cover the same or a superset of branch edges in less
time

Mutate inputSelect input
from corpus

Execute inputIf interesting,
save to corpus

AFL has several mutation strategies

• Deterministic bit flips

• Addition and subtraction of small ints

• Swap integers for interesting values (-1, 256, etc)

• Stacked random tweaks (multiple at a time)

• Splice multiple files together

Mutate inputSelect input
from corpus

Execute inputIf interesting,
save to corpus

AFL Remains Popular/Effective
“AFL++” incorporates many individual improvements over past decade

“Magma: A Ground-Truth Fuzzing Benchmark” Hazimeh, Herrera and Payer. Proc of ACM on Measurement and Analysis of Computer Systems, 2021  
https://doi.org/10.1145/3428334

https://doi.org/10.1145/3428334

Challenges/risks that come with fuzzing
Aside from “how to generate the inputs”

• How to de-duplicate bugs? 100’s of inputs might trigger the “same” bug

• How to minimize failure-inducing inputs?

• How to know when we are done fuzzing, and how much resources to commit?

How SQLite is Tested
Core test harnesses

• “TCL”

• “TH3” (licensed)

• SQL Logic tests - differential testing

• dbsqlfuzz - proprietary fuzz tester, inputs are database file and query

SQLite tests environmental inputs
“Anomaly Testing”

• Out of memory errors

• I/O errors

• Crashes

SQLite has 100% branch and MC/DC coverage

• “Defensive” programming concerns

• Why is the test suite run three times for coverage?

void assert(booolean value){
 if(value){ //Should not be reachable
 crash();
 }
}

SQLite uses Dynamic Analysis with Tests
Additional runtime checks for invalid behavior

• Assertions

• Valgrind

• Memsys2

• Journal assertions

• Undefined behavior checks

Sanitizers Help Detect Bugs, but Aren’t Free
Address Sanitizer/Contiki-NG µIP case study

“So Many Fuzzers, So Little Time✱: Experience from Evaluating Fuzzers on the Contiki-NG Network (Hay)Stack” Poncelet, Sagonas and Tsiftes, ASE 2022  
https://doi.org/10.1145/3551349.3556946

https://doi.org/10.1145/3551349.3556946

Sanitizers Help Detect Bugs, but Aren’t Free
Effective Type Sanitizer/Contiki-NG µIP case study

“So Many Fuzzers, So Little Time✱: Experience from Evaluating Fuzzers on the Contiki-NG Network (Hay)Stack” Poncelet, Sagonas and Tsiftes, ASE 2022  
https://doi.org/10.1145/3551349.3556946

https://doi.org/10.1145/3551349.3556946

Fuzzing Structured Inputs
Example: Find bugs in C compilers

• Motivation: bugs in C compilers can be devastating

• The oracle is “easy”: compare behavior across
optimization levels and across compilers and
versions

• Generating inputs to find those bugs is hard

• Undefined behavior

• Atypical code may be under-represented in
developer test suites

“Finding and Understanding Bugs in C Compilers” Yang et al, PLDI 2011  
https://doi.org/10.1145/1993316.1993532

https://doi.org/10.1145/1993316.1993532

Randomly Generating C Programs
Procedure

• Begin with grammar for subset of C

• Pick an allowable production from the grammar

• Generate that production and any targets needed

• If it’s a non-terminal production then recurse

• Handle dataflow transfer through each new production, keeping track of in-
scope locals, globals etc

• Perform safety checks (avoid undefined behavior)

“Finding and Understanding Bugs in C Compilers” Yang et al, PLDI 2011  
https://doi.org/10.1145/1993316.1993532

https://doi.org/10.1145/1993316.1993532

Randomly Generated C Programs Find Bugs

“Finding and Understanding Bugs in C Compilers” Yang et al, PLDI 2011  
https://doi.org/10.1145/1993316.1993532

https://doi.org/10.1145/1993316.1993532

