
© 2023 Jonathan Bell, CC BY-SA

Continuous Integration and
Cloud Resources
Advanced Software Engineering
Spring 2023

http://creativecommons.org/licenses/by-sa/4.0/

Software Testing in the News

https://www.adn.com/alaska-news/aviation/2023/02/20/after-alaska-airlines-planes-bump-runway-a-scramble-to-pull-the-plug/

“That morning, a software bug in an update to the
DynamicSource tool caused it to provide seriously undervalued
weights for the airplanes.

The Alaska 737 captain said the data was on the order of
20,000 to 30,000 pounds light. With the total weight of those
jets at 150,000 to 170,000 pounds, the error was enough to
skew the engine thrust and speed settings.

Both planes headed down the runway with less power and at
lower speed than they should have. And with the jets judged
lighter than they actually were, the pilots rotated too early 
 
Both the Max 9 and 737-900ER have long passenger cabins,
which makes them more vulnerable to a tail strike when the
nose comes up too soon.” …

… “A quick interim fix proved easy: When operations staff turned off
the automatic uplink of the data to the aircraft and switched to manual
requests “we didn’t have the bug anymore.”

Peyton said his team also checked the integrity of the calculation itself
before lifting the stoppage. All that was accomplished in 20 minutes.

The software code was permanently repaired about five hours later.

Peyton added that even though the update to the DynamicSource
software had been tested over an extended period, the bug was
missed because it only presented when many aircraft at the same time
were using the system.

Subsequently, a test of the software under high demand was
developed.”

https://www.adn.com/alaska-news/aviation/2023/02/20/after-alaska-airlines-planes-bump-runway-a-scramble-to-pull-the-plug/

Continuous Integration
Motivation

• Our systems involve many components, some of which might even be in
different version control repositories

• How does a developer get feedback on their (local) change?

My Social Network App

Cache
Check

Send
response

Build
friends list

Build
Suggestions

Build
Newsfeed

Our changed code

Other developers’ changed code

0…………….

Continuous Integration is a Software Pipeline

Code Review Style Check

Compile

Unit Test

Prepare
Deployment

Integration Test

Load Test

Automate this centrally, provide a central record of results

KPIsEnd-to-end
Test

Develop Build Test Deploy Monitor

De
fe

ct
 C

os
t

Concept

Design

Development

Local Testing
Commit/Integration
Code Review

Production
Late-Stage Production

Agile Values Fast Quality Feedback Loops
Faster feedback = lower cost to fix bugs

Old feedback loop: do this infrequently 
New feedback loop: do this continuously

The Power of Automating Feedback Loops
Consider tasks that are done by dozens of developers

© Randal Munroe/xkcd, licensed CC-BY-SA
https://xkcd.com/1205/

https://xkcd.com/1205/

Continuous Integration in Practice
Small scale, with a service like CircleCI, GitHub Actions or TravisCI

Commits code to
Developer

GitHub

TravisCI

Checks for updates

Runs workflow for
each commit

GitHub
ActionsCircleCI

Brainstorm: What could we check in CI for Google Docs?
Consider all scopes of testing, from unit to system-level

• Brainstorming notes:

• Run unit tests

• Run some localization tests

• Validate infrastructure deployment

• Do regression testing on user scenarios - ensure that old/new look the same

• Compress images, other artifacts before deployment

• Update documentation, internal screenshots

• Build software, lint, etc

• Check interoperability with other/existing packages

• Accessibility testing - ensure that components can be accessed through screen readers

• Check/gate on test quality metrics

• Do security audit

• Design review? (Code review fits somewhere in the workflow)

Example CI Pipeline
Open source project: PrestoDB

https://travis-ci.com/github/prestodb/presto

https://travis-ci.com/github/prestodb/presto

Use Scalable Cloud Resources for CI
Example: Developing a Fuzzer
• “Fuzzers” are automated testing systems that aim to automatically generate

inputs to programs that cover code and reveal bugs

• Fuzzers are non-deterministic: to evaluate with confidence, need repeated,
long-running trials

• Evaluating fuzzers is time consuming, determining which changes impact
performance is confusing

• How to run experiments in the cloud?

CI Pipelines Automate Otherwise Manual Testing

https://github.com/neu-se/CONFETTI/actions

Every commit: Run 10 minute
performance test on 5

benchmarks, repeating each test
5 times (25 concurrent jobs)

On Demand: Run 24 hour
performance test on 5

benchmarks, repeating each test
20 times (100 concurrent jobs)

https://github.com/neu-se/CONFETTI/actions

CI Pipelines Automate Otherwise Manual Testing

On Demand: Run 24 hour
performance test on 5

benchmarks, repeating each test
20 times (100 concurrent jobs)

https://github.com/neu-se/CONFETTI/actions

https://github.com/neu-se/CONFETTI/actions

Attributes of Effective CI Processes

• Infrastructure:

• CI should be repeatable (deterministic)

• CI should be fast, providing feedback within minutes
or hours

• Policies:

• Do not allow builds to remain broken for a long time

• CI should run for every change

• CI should not completely replace pre-commit testing

Brainstorm: Why might CI not be repeatable?

• Flaky tests

• If dependency server is down

• The infrastructure that we are using is under-provisioned

• Generally unmaintained - some dependencies may have changed, requiring
more complex upgrade

• If not everything is automated

Challenges and Solutions for Repeatable Builds

• Which commands to run to produce an executable? (build systems)

• How to link third-party libraries? (dependency managers)

• How to specify system-level software requirements? (containers)

• How to specify infrastructure requirements? (Infrastructure as code)

Build Systems Orchestrate Software Engineering Tasks
Early build tools (e.g. “make”) are scripting tools with special support for commands 
that transform “source files” to “target files”

edit : main.o kbd.o command.o display.o \
 insert.o search.o files.o utils.o
 cc -o edit main.o kbd.o command.o display.o \
 insert.o search.o files.o utils.o
main.o : main.c defs.h
 cc -c main.c
kbd.o : kbd.c defs.h command.h
 cc -c kbd.c
command.o : command.c defs.h command.h
 cc -c command.c
display.o : display.c defs.h buffer.h
 cc -c display.c
insert.o : insert.c defs.h buffer.h
 cc -c insert.c
search.o : search.c defs.h buffer.h
 cc -c search.c
files.o : files.c defs.h buffer.h command.h
 cc -c files.c
utils.o : utils.c defs.h
 cc -c utils.c
clean :
 rm edit main.o kbd.o command.o display.o \
 insert.o search.o files.o utils.o

Build Systems Orchestrate Software Engineering Tasks
“Orchestrate” -> Execute in the right order, ideally with concurrency

• Example tasks:

• Installing dependencies

• Compiling the code

• Running static analysis

• Generating documentation

• Running tests

• Creating artifacts for customers

• Deploying Code

• Example build systems: xMake, ant, maven, gradle, npm…

Dependency Managers Organize External Dependencies

• Addresses this problem: “Before you compile this code, install commons-lang
from the apache website”

• Declare a dependency using coordinates (unique ID of a package plus
version)

• Packages are archived in common repositories; fetched/linked by
dependency manager

• Dependency managers handle transitive dependencies 🐉

• Examples: Maven, NPM, pip, cargo, apt

Specify and Depend on Package Versions with Care
Semantic Versioning is Often Expected

• Library maintainers expected to indicate
breaking changes with version numbers

• Dependency consumers can specify
constraints on versions (e.g. accept 2.0.x)

Distribution of dependencies of all packages in NPM over time (2023, Pinckney et al)

https://semver.org

Few Bug-Fix Updates Create Vulnerabilities
(Most vulnerabilities are patched in them!)

Distribution of percentages of packages’ updates by semver increment type, segmented across security
effects. Within each security effect the percentages across semver increment types are normalized.

(2023, Pinckney et al)

Containers Include System-Level Dependencies

• Common problems:

• Incorrect or conflicting version of system dependency

• Different OS with files in the “wrong” place

• Dependencies no longer available

• Containers can include the entire stack

NPM

Our
Application

Third-party
libraries

NodeJS

System-level
dependencies (e.g.

OpenSSL, zlib, libuv)

Operating System

Files on our disk

“Container image”

Containers are Deployed From Images

• A container image is an archive with a complete filesystem

• Images are defined in terms of layers

• Ideally: include all dependencies in image (do not fetch at runtime)

• Publish container images to registries

• A container is a set of processes running within a copy of that filesystem

• OS can impose restrictions on memory limits, access to CPU, I/O devices, etc

Example Containers: Building jonbell.net

 - group: Conference Technical Program Committee Membership
 items:
 - name: Automated Software Engineering (ASE)
 years: [2018, 2019, 2020, 2021, 2022, 2023]
 - name: Foundations of Software Engineering (ESEC/FSE)
 years: [2022, 2023] 
 …

Example snippet cv.yml
cv.yml + HTML templates

+ LaTeX templates

Jekyll

LaTeX
Libraries

Jekyll
Libraries

LaTeX
Ruby

UbuntuScreenshot of generated section of website:

Screenshot of generated section of CV:

http://jonbell.net

Example Containers: Building jonbell.net

FROM ubuntu:focal
ARG DEBIAN_FRONTEND=noninteractive

RUN curl -sL https://deb.nodesource.com/setup_16.x | bash
RUN apt-get update
RUN apt-get -y install ruby
RUN apt-get -y install texlive-latex-base texlive-fonts-recommended \
 texlive-latex-extra texlive-fonts-extra texlive-bibtex-extra \
 ruby-full build-essential zlib1g-dev locales curl nodejs
RUN gem install jekyll bundler jekyll-sitemap jekyll-seo-tag \
 jekyll-coffeescript jekyll-scholar coffee-script coffee-script-source \
 bibtex-ruby citeproc-ruby csl-styles rexml execjs latex-decode \
 citeproc csl namae

FROM jonbell/website-builder
Copy site directory
COPY . /site
WORKDIR /site
RUN bundle install
RUN mkdir _cv/generated/
Build Site
RUN bundle exec jekyll build
Build CV
WORKDIR /site/_cv
RUN pdflatex jbell_cv
RUN bibtex jbell_cv
RUN pdflatex jbell_cv
RUN pdflatex jbell_cv

RUN cp jbell_cv.pdf ../_site/cv.pdf

EXPOSE 80
CMD ["nginx", "-g", "daemon off;"]

Base container: built only when I want to update dependencies

Website container: built on each website update

http://jonbell.net

What is the payoff of this website/CV mess?
Estimated 8 hours to migrate out of WordPress to this containerized build

© Randal Munroe/xkcd, licensed CC-BY-SA
https://xkcd.com/1205/

https://xkcd.com/1205/

Infrastructure as Code
Common metaphor “Infrastructure as Pets vs Cattle”

• Traditional approach to run a server: install dependencies, configure them, maintain
the entire system

• Recover from crash: Manually re-install/configure

• Share with others: Write a blog post

• Creating a test environment: Manual

• IaC: Specify the docker container(s) to run, along with their network configuration

• Recover from crash: Re-deploy containers

• Share with others: Share a configuration file

• Creating a test environment: Automatic

Infrastructure as Code
Managing Container Deployments: Kubernetes

Cache Friends
list Newsfeed

My Social Network App

Cache
Check

Send
response

Build
friends list

Build
Suggestions

Build
Newsfeed

“Give me at least 1 of each of these app services in their own docker containers, and if the
load gets above a threshold, spin up more of them”

Suggestions

Suggestions

Some other
customer’s service

Managed by Kubernetes https://research.google/pubs/pub43438/

https://research.google/pubs/pub43438/

Continuous Integration Service Models

• Self-hosted/managed on-premises or in cloud

• Jenkins

• Fully cloud managed

• GitHub Actions, CircleCI, Travis, many
more…

• Billing model: pay per-build-minute running
on SaaS infrastructure

• “Self-hosted runners” run builds on your
own infrastructure, usually “free”

Self-managed Vendor-managed

Physical data center

Network

Storage

Physical Server

Operating System

Middleware

Application

Virtualization

Self-managed, using
VMs

Physical data center

Network

Storage

Physical Server

Operating System

Middleware

Application

Virtualization

SaaS

Physical data center

Network

Storage

Physical Server

Operating System

Middleware

Application

Traditional, on-
premises computing

Virtualization

Allocate Enough Resources to Avoid Flaky Tests
Study of 30 open-source projects written in Java

CPU 0.1 and RAM 1GB

CPU 0.1 and RAM 2GB

CPU 0.25 and RAM 2GB

CPU 0.5 and RAM 2GB

CPU 0.5 and RAM 4GB

CPU 1 and RAM 4GB

CPU 1 and RAM 8GB

CPU 2 and RAM 4GB

CPU 2 and RAM 8GB

CPU 2 and RAM 16GB

CPU 4 and RAM 8GB

0 5 10 15 20
Number of Projects

Configuration Ranked As
Best Price
Best Reliability
Best Reliability and Price

Cloud Infrastructure is Best Suited for Variable Workloads

• Consider: Does your workload benefit from ability to scale up/down?

• Example: need to run 300 VMs, each with 4 vCPUs, 16GB RAM

• Private cloud: Dell PowerEdge Pricing (AMD EPYC 64 core CPUs)

• 7 servers, each with 128 cores/256 threads, 512GB RAM, 3 TB storage =
$162,104

• Public cloud: Amazon EC2 Pricing (M5.xlarge instances, $0.121/VM-hour)

• 10 VMs for 1 year + 290 VMs for 1 month: $36,215.30

• 300 VMs for 1 year: $317,988

