
© 2023 Jonathan Bell, CC BY-SA

DevOps & Continuous 
Deployment
Advanced Software Engineering 
Spring 2023 

http://creativecommons.org/licenses/by-sa/4.0/


Outline

1. Continuous delivery and devops: motivation

2. Infrastructure as code: concepts, and the mess of tools

3. Continuous delivery practices using infrastructure as code

4. Monitoring, telemetry and operations practices and tools



De
fe

ct
 C

os
t

Concept

Design

Development

Local Testing
Commit/Integration
Code Review

Production
Late-Stage Production

Cost to Fix a Defect Over Time
Rough estimate

The final quality frontier: testing and 
monitoring in production



Case Study of a Failed Deployment: Knight Capital

“In the week before go-live, a Knight engineer manually deployed the 
new RLP code in SMARS to its eight servers. However, the engineer 
made a mistake and did not copy the new code to one of the servers. 
Knight did not have a second engineer review the deployment, and 
neither was there an automated system to alert anyone to the 
discrepancy. “

https://www.henricodolfing.com/2019/06/project-failure-case-study-knight-capital.html 

https://www.henricodolfing.com/2019/06/project-failure-case-study-knight-capital.html


What Could Knight Capital Have Done Better?

• Use capture/replay testing instead of driving market conditions in a test


• Avoid including “test” code in production deployments


• Automate deployments


• Define and monitor risk-based KPIs


• Create checklists for responding to incidents



Deployment Philosophy: Instagram 
“Faster is safer”

“If stuff blows up it affects a very small 
percentage of people”

Instagram cofounder and CTO Mike Krieger

https://www.fastcompany.com/3047642/do-the-simple-thing-first-the-engineering-behind-instagram

https://www.fastcompany.com/3047642/do-the-simple-thing-first-the-engineering-behind-instagram


Continuous Delivery
“Faster is safer”: Key values of continuous delivery

• Release frequently, in small batches


• Maintain key performance indicators to evaluate the impact of updates


• Phase roll-outs


• Evaluate business impact of new features



Continuous Delivery Relies on Staging Environments

• As software gets more complex with more dependencies, it's impossible to 
simulate the whole thing when testing


• Idea: Deploy to a complete production-like environment, but don't have 
everyone use it


• Examples:


• “Eat your own dogfood”


• Beta/Alpha testers


• Lower risk if a problem occurs in staging than in production



What is non-continuous deployment?
Deployment Example: NodeJS/MongoDB App

HAProxy
Speaks HTTP(s)

Has access to SSL certificates
Forwards decrypted traffic to our app

NodeJS
Here’s our fantastic 

app!

MongoDB
Stores app data

certbot
Installs and renews SSL certificates

apt-get
Maintains updates

Client Requests



What is non-continuous deployment?
Deployment Example: NodeJS/MongoDB App

First setup:
Step 0: Install Ubuntu
Step 1: Install HAProxy
Step 2: Configure HAProxy
Step 3: Configure firewall
Step 4: Install certbot
Step 5: Configure SSL
Step 6: Install MongoDB
Step 7: Configure MongoDB, create database
Step 8: Install NodeJS
Step 9: Copy application to server
Step 10: Test application

HAProxy
Speaks HTTP(s)

Has access to SSL certificates
Forwards decrypted traffic to our app

NodeJS
Here’s our fantastic 

app!

MongoDB
Stores app data

certbot
Installs and renews SSL certificates

apt-get
Maintains updates

Updating app:
Step 1: Copy updated app to server
Step 2: Restart app
Step 3: Check still working

Updating infrastructure:
Step 1: SSH to server
Step 2: apt-get upgrade?
Step 3: Hope that it works?



What is non-continuous deployment?
Deployment Example: NodeJS/MongoDB App, now scaling to multiple servers

HAProxy
Speaks HTTP(s)

Has access to SSL certificates
Forwards decrypted traffic to our app

NodeJS
Here’s our fantastic app!

MongoDB
Stores app data

certbot
Installs and renews SSL certificates

apt-get
Maintains updates

apt-get
Maintains updates

NodeJS
Here’s our fantastic app!

apt-get
Maintains updates

apt-get
Maintains updates



DevOps Blends Operations and Development Responsibilities

• Who manages infrastructure, deploys software, operates/monitors it?


• Pre-DevOps:


• Entirely separate team (maybe a vendor operating under contract!) operates 
software


• DevOps:


• Blended responsibilities 
between developers 
and operators

Developers Operators

Waterfall

Agile

DevOps

Test ProductionStaging

ProductionStagingTest

StagingTest ProductionProduction



Continuous Deployment Relies on Infrastructure as Code
Core DevOps tenet: Automate provisioning of infrastructure

© Randal Munroe/xkcd, licensed CC-BY-SA
https://xkcd.com/1205/ 

https://xkcd.com/1205/


Infrastructure As Code: Overview

• Provisioning servers is tedious and error prone


• Deploy a VM, then ssh to it, install some packages, etc


• Keeping servers up-to-date is also a struggle


• Ideal:


• “Give me HAProxy with some configuration file, and keep that 
configuration in a git repo, and when I change it, roll out an 
update”


• “Give me some containers running my NodeJS app, and when 
I update my app, roll it out to those containers”


• “Give me a bunch of servers with MongoDB set up in a cluster”



Infrastructure as Code: Configuration Management

• Goal: Create a system that, when run, can automatically 
bring physical or virtual machines to some configured state


• These configurations can then go into version control, 
code review, etc


• Metaphor: “Recipes” for configuring servers, organized into 
“cookbooks”


• “Oh, this is how they do things at Amazon” - Inspiration 
for Chef, c 2009 (Apache License)


• Other tools with similar aims: Puppet (c 2005, Apache 
License), Ansible (c 2012, GPL)

Configuration management 
tool

MongoDB
(Managed by configuration management tool)

https://www.chef.io/blog/announcing-chef


Infrastructure as Code: Cloud Orchestration

• Goal: automatically provision public 
cloud resources on which we will then 
deploy software and configurations


• Again, those configurations are “code” 
in version control


• Terraform (HashiCorp, c. 2014, Mozilla 
Public License) as primary example


• Other configuration management tools 
support cloud now, management, too

Screenshot: https://developer.hashicorp.com/terraform/intro 

https://developer.hashicorp.com/terraform/intro


Infrastructure as Code: Auto-Scaling Clouds

• Goal: Maximize resource utilization and application performance under 
dynamic workloads


• Architecture: Each application runs in a group of containers on a large cluster 
(many applications on one cluster)


• Autoscale number of containers based on CPU, memory, or custom metrics


• “Borg” (Google, c 2014, proprietary), evolves into Kubernetes (Google, c 
2014, Apache License)

https://static.googleusercontent.com/media/research.google.com/en//pubs/archive/43438.pdf


Continuous Delivery Leverages IaC
IaC enables “easy” staging deployment

Testing 
Environment

Staging Environment Production Environment

Beta/Dogfooding User Requests
Developer 

Environments

Revisions are “promoted” towards production

Q/A takes place in each stage (including production!)



Continuous Delivery Practices
Release Pipelines

• Even if you are deploying every day (“continuously”), you still have some 
latency


• A new feature I develop today won't be released today


• But, a new feature I develop today can begin the release pipeline today 
(minimizes risk)


• Release Engineer: gatekeeper who decides when something is ready to go 
out, oversees the actual deployment process



Deployment Example: Facebook.com
Pre-2016

~1 week of development

3x Daily

Stabilize

release branch
Weekly

3 days

All changes from week
that are ready for release

Release Branch
4 days All changes that survived stabilizing

Developers working in their own branch

Your change doesn’t go out 
unless you’re there that day at 

that time to support it!

~1 week of development

master branch

When feature is ready, push as 1 change to master branch

production “When in doubt back out”
https://engineering.fb.com/2017/08/31/web/rapid-release-at-massive-scale/


https://engineering.fb.com/2017/08/31/web/rapid-release-at-massive-scale/


Deployment Example: Facebook.com
Chuck Rossi, Director Software Infrastructure & Release Engineering @ Facebook

“Our main goal was to make sure that the new 
system made people’s experience better — or 
at the very least, didn’t make it worse. After 
almost exactly a year of planning and 
development, over the course of three days in 
April 2017 we enabled 100 percent of our 
production web servers to run code 
deployed directly from master.”

“Rapid release at massive scale” https://engineering.fb.com/2017/08/31/web/rapid-release-at-massive-scale/

https://engineering.fb.com/2017/08/31/web/rapid-release-at-massive-scale/


Deployment Example: Facebook.com
Post-2016: Truly continuous releases from master branch

https://engineering.fb.com/2017/08/31/web/rapid-release-at-massive-scale/

https://engineering.fb.com/2017/08/31/web/rapid-release-at-massive-scale/


Continuous Delivery Tools

• Auto-deploys from version control to a staging environment + promotes 
through release pipeline


• Monitors key performance indicators to automatically take corrective actions


• Example: “Spinnaker” (Netflix, c 2015, MIT License)

Example CD pipeline from Spinnaker’s documentation: https://spinnaker.io/docs/concepts/#application-deployment 

https://spinnaker.io
https://spinnaker.io/docs/concepts/#application-deployment


Continuous Delivery Relies on Monitoring
Consider both direct (e.g. business) metrics, and indirect (e.g. system) metrics

• Hardware


• Voltages, temperatures, fan speeds, component health


• OS


• Memory usage, swap usage, disk space, CPU load


• Middleware


• Memory, thread/db connection pools, connections, response time


• Applications


• Business transactions, conversion rate, status of 3rd party components



Tools for Monitoring Deployments

• Nagios (c 2002, GPL): Agent-based architecture (install agent on each 
monitored host), extensible plugins for executing “checks” on hosts


• Three significant forks: Icinga (c 2009), Shinken (c 2009), Naemon (c 2015)



Monitoring can help identify operational issues
Specialized tooling for building dashboards

Grafana (AGPL, c 2014) InfluxDB (MIT license, c 2013)



Continuous Delivery Tools Take Automated Actions
Automated roll-back of updates at Netflix based on SPS

https://www.youtube.com/watch?v=qyzymLlj9ag

https://www.youtube.com/watch?v=qyzymLlj9ag


From Monitoring to Observability
Understanding what is going on inside of our deployed systems

Grafana (AGPL, c 2014) InfluxDB (MIT license, c 2013)



From Monitoring to Observability
Understanding what is going on inside of our deployed systems

Example dashboard by DataDog:
https://www.datadoghq.com/blog/

gke-dashboards-integration-
improvements/ 

https://www.datadoghq.com/blog/gke-dashboards-integration-improvements/
https://www.datadoghq.com/blog/gke-dashboards-integration-improvements/
https://www.datadoghq.com/blog/gke-dashboards-integration-improvements/


Consider Observability of Apps, Too
Track latency, error rates, etc. to discover problems before

Screenshot: https://www.akitasoftware.com/blog-posts/plug-and-play-endpoint-views-for-metrics-errors

https://www.akitasoftware.com/blog-posts/plug-and-play-endpoint-views-for-metrics-errors


Monitoring Services Take Automated Actions



PaaS is the Simplest Choice for App Deployment

• Platform-as-a-Service (PaaS) products provide common components that 
most apps need, fully managed by the vendor: load balancer, monitoring, 
application server


• Examples: Heroku, AWS Elastic Beanstalk, Google App Engine


• Some PaaS products are designed to deploy apps as single functions that 
are invoked when a web request is made, and don’t run otherwise 
(“function-as-a-service”)


• Examples: AWS Lambda, Google Cloud Functions, Azure Functions


• Some PaaS products also provide databases and authentication


• Examples: Google Firebase, Back4App
Physical data center

Network

Storage

Physical Server

Operating System

Middleware

Application

Virtualization

PaaS



Heroku is a Platform as a Service

• Takes as input: a web app (e.g. NodeJS app)


• No need to provide a container, entry point to our code is 
enough, e.g. “npm start”


• Provides: hosted web app at our choice of URL, with ability to 
scale resources up/down on-demand


• Load balancer is fully managed by Heroku, makes scaling 
transparent


• Can auto-scale down to use no resources, then only launch 
a container once a request has been received


• Dashboard provides monitoring/reporting
Container

Our NodeJS App

Container

Our NodeJS App

Load balancer + 
traffic monitor

HTTP requests



Next Steps

• Thursday’s discussion:


• Canopy (end-to-end performance tracing for large systems at Facebook)


• Pay more attention to the problem that they are solving and what the 
evaluation shows as opposed to how they implemented this


• Study of configuration evolution in cloud systems


• Next week: Collaboration in SE, project status update Tues by 11am


