DevOps & Continuous
Deployment

Advanced Software Engineering
Spring 2023

© 2023 Jonathan Bell, CC BY-SA

http://creativecommons.org/licenses/by-sa/4.0/

Outline

1. Continuous delivery and devops: motivation

2. Infrastructure as code: concepts, and the mess of tools

3. Continuous delivery practices using infrastructure as code
4. Monitoring, telemetry and operations practices and tools

Cost to Fix a Defect Over Time

Rough estimate

*g The final quality frontier: testing and
O monitoring in production\
O
Q
D
A
Vo)
OO OQ | O@ (O Oo Oo % (Q e
2) 4 G 2 % ®
G 0. &, S %, e % XS
0 %) O P 5 D Cx. ("
‘o < Qo /// e 7 Q
/))@ 3}/) /)/ L/Q O/) \Q@
s o . 2
N7

Case Study of a Failed Deployment: Knight Capital

L g A

Knightmare: A DevOps R L -
Cautionary Tale ey -

[was speaking at a conference last year on the topics of DevOps, Configuration as Code, and
Continuous Delivery and used the following story to demonstrate the importance making
deployments fully automated and repeatable as part of a DevOps/Continuous Delivery initiative.
Since that conference I have been asked by several people to share the story through my blog.

This story is true — this really happened. This is my telling of the story based on what I have

read (I was not involved in this).

“In the week before go-live, a Knight engineer manually deployed the
new RLP code in SMARS to its eight servers. However, the engineer
made a mistake and did not copy the new code to one of the servers.
Knight did not have a second engineer review the deployment, and
neither was there an automated system to alert anyone to the
discrepancy. “

This is the story of how a company with nearly $400 million in assets went ban

minutes because of a failed deployment.

https://www.henricodolfing.com/2019/06/project-failure-case-study-knight-capital.html

https://www.henricodolfing.com/2019/06/project-failure-case-study-knight-capital.html

What Could Knight Capital Have Done Better?

* Use capture/replay testing instead of driving market conditions in a test
* Avoid including “test” code in production deployments

 Automate deployments

* Define and monitor risk-based KPlIs

* Create checklists for responding to incidents

Deployment Philosophy: Instagram

“Faster Is safer’”

“If stuff blows up It affects a very small
percentage of people”

Instagram cofounder and CTO Mike Krieger

https://www.fastcompany.com/3047642/do-the-simple-thing-first-the-engineering-behind-instagram

https://www.fastcompany.com/3047642/do-the-simple-thing-first-the-engineering-behind-instagram

Continuous Delivery

“Faster Is safer”: Key values of continuous delivery

* Release frequently, in small batches
 Maintain key performance indicators to evaluate the impact of updates
 Phase roll-outs

e Evaluate business impact of new features

Continuous Delivery Relies on Staging Environments

* As software gets more complex with more dependencies, it's impossible to
simulate the whole thing when testing

* |dea: Deploy to a complete production-like environment, but don't have
everyone use it

 Examples:
» “Eat your own dogfood”
 Beta/Alpha testers

| ower risk if a problem occurs in staging than in production

What is nhon-continuous deployment?
Deployment Example: NodedS/MongoDB App

Client Requests =——————— O - - O

HAProxy

Speaks HTTP(s)
Has access to SSL certificates
Forwards decrypted traffic to our app

!

MongoDB
Stores app data

certbot
Installs and renews SSL certificates

apt-get

Maintains updates

What is nhon-continuous deployment?
Deployment Example: NodedS/MongoDB App

O
\ || -

O

HAProxy

Speaks HTTP(s)
Has access to SSL certificates
Forwards decrypted traffic to our app

MongoDB
Stores app data

certbot
Installs and renews SSL certificates

apt-get

Maintains updates

First setup:

/ |Step 0: Install Ubuntu

Step 1: Install HAProxy
Step 2: Configure HAProxy
Step 3: Configure firewall
Step 4: Install certbot

Step 5: Configure SSL
Step 6: Install MongoDB

Step 7: Configure MongoDB, create database

Step 8: Install NodedS
Step 9: Copy application to server
Step 10: Test application

Updating app:

Step 1: Copy updated app to server
Step 2: Restart app

Step 3: Check still working

Updating infrastructure:
Step 1: SSH to server
Step 2: apt-get upgrade?
Step 3: Hope that it works?

What is nhon-continuous deployment?

Deployment Example: NodedS/MongoDB App, now scaling to multiple servers

. v, . . v,

HAProxy

Speaks HTTP(s)
Has access to SSL certificates
Forwards decrypted traffic to our app apt-get

Maintains updates

certbot | |
Installs and renews SSL certificates e — | ®
apt-get
Maintains updates
O -) .
|| : apt-get
Maintains updates
MongoDB P

Stores app data

apt-get

Maintains updates

DevOps Blends Operations and Development Responsibilities

 Who manages infrastructure, deploys software, operates/monitors it?

* Pre-DevOps:

* Entirely separate team (maybe a vendor operating under contract!) operates

software
 DevOps:

* Blended responsibillities
between developers
and operators

Watertall
Agile

DevOps

Developers

Test

Test Staging Production

Test

Operators

Staging Production

Staging Production

Production

Continuous Deployment Relies on Infrastructure as Code

Core DevOps tenet: Automate provisioning of infrastructure

HOW LONG (AN YOU WORK ON MAKING A ROUTINE TASK MORE

EFRCIENT BEFORE YOURE SPENDING MORE TME THAN YOU SAVE?
(ACROSS FIVE YEARS)

HOW OFTEN YOU DO THE. TRSK

[l
Ofoay Zoar DALY WEEKLY MONFLY YEPRLY _ B _ .
1 5ecoND || DAY | 2 Hours |, 20 4 1 5 — l
MINUTES | MINUTES | MINUTE | SECONDS HAProxy
5 Fa:asawesstSLoerﬂm e
5 5EoNDs | (5 | oAvs | 12.ovks | 2wours | 2L | O | 25 o e
COrrn Installs and renews SSL certificates
30 SEONS |1 e ([3] 0 |12 vowks | 2 voues | (2D | B o e
o m —
MongoDB Maintains updates
Stores app data

apt-ge
Maintains syl 5s

© Randal Munroe/xkcd, licensed CC-BY-SA
https://xkcd.com/1205/

https://xkcd.com/1205/

Infrastructure As Code: Overview

* Provisioning servers Is tedious and error prone ‘

HAProxy
Speaks HTTP(s)
Has access to SSL certificates

* Deploy a VM, then ssh to it, install some packages, etc i

certbot
Installs and renews SSL certificates

apt-get
Maintains updates

. . apt-get
» Keeping servers up-to-date is also a struggle Maintains upcates

[— |
- |deal: s on

Stores app data

apt-ge
Maintains " Ss

Maintains updates

» “Give me HAProxy with some configuration file, and keep that

configuration in a git repo, and when | change it, roll out an
update”

» “Give me some containers running my NodedS app, and when
| update my app, roll it out to those containers™

» “Give me a bunch of servers with MongoDB set up in a cluster”

Infrastructure as Code: Configuration Management

» Goal: Create a system that, when run, can automatically

bring physical or virtual machines to some configured state &+ m m
» These configurations can then go into version control, Configuration management
code review, etc tool
» Metaphor: “Recipes” for configuring servers, organized into MongoDB
T cO OkbOOkS” (Managed by configuration management tool)

 “Oh, this is how they do things at Amazon” - Inspiration
for Chef, c 2009 (Apache License)

« Other tools with similar aims: Puppet (c 2005, Apache
License), Ansible (c 2012, GPL)

https://www.chef.io/blog/announcing-chef

» (Goal: automatically provision public
cloud resources on which we will then
deploy software and configurations

* Again, those configurations are “code”

INn version control

e Terraform (HashiCorp, c. 2014, Mozilla
Public License) as primary example

* Other configuration management tools
support cloud now, management, too

Infrastructure as Code: Cloud Orchestration

TERRAFORM PROJECT

Write
Define infrastructure in 000 r_—]
configuration files
Terraform Terraform
Configuration State File

Plan

Review the changes
Terraform will make to

your infrastructure

Apply g l l 1
Terraform provisions i
your infrastructure and E aws £y — PROVIORRS

updates the state file.

Screenshot: https://developer.hashicorp.com/terraform/intro

https://developer.hashicorp.com/terraform/intro

Infrastructure as Code: Auto-Scaling Clouds

 Goal: Maximize resource utilization and application performance under
dynamic workloads

* Architecture: Each application runs in a group of containers on a large cluster
(many applications on one cluster)

* Autoscale number of containers based on CPU, memory, or custom metrics

» “Borg” (Google, c 2014, proprietary), evolves into Kubernetes (Google, ¢
2014, Apache License)

https://static.googleusercontent.com/media/research.google.com/en//pubs/archive/43438.pdf

Continuous Delivery Leverages laC

laC enables “easy” staging deployment

Developer |
Environments Beta/Dogfooding User Requests

Staging Environment Production Environment

Testing
Environment

Revisions are “promoted” towards production

g
Q/A takes place in each stage (including production!)

Continuous Delivery Practices

Release Pipelines

 Even if you are deploying every day (“continuously”), you still have some
latency

* A new feature | develop today won't be released today

 But, a new feature | develop today can begin the release pipeline today
(Minimizes risk)

 Release Engineer. gatekeeper who decides when something is ready to go
out, oversees the actual deployment process

Deployment Example: Facebook.com
Pre-2016

Developers working in their own branch

When feature is ready, push as 1 change to master branch

—-
—-
-

~1 week of development

master branch

3 days 4 days All changes that survived stabilizing
v
Weekly

All changes from week
that are ready for release

release branch
v

4 Il = = = = =E = =N = = =
4 Il = O = = =N = = = =
4 Il = = = = =E = =N = = =

Your change doesn't go out

pI’Od uction unless you're there that day at 3x Daily “When in doubt back out”
https://engineering.fb.com/2017/08/31/web/rapid-release-at-massive-scale/ that time to support it!

https://engineering.fb.com/2017/08/31/web/rapid-release-at-massive-scale/

Deployment Example: Facebook.com

Chuck Rossi, Director Software Infrastructure & Release Engineering @ Facebook

< % . :
R T AR T T R T e
£ bty L -

“Our main goal was to make sure that the new

system made people’s experience better — or
at the very least, didn’t make it worse. After
almost exactly a year of planning and
development, over the course of three days in
April 2017 we enabled 100 percent of our
production web servers to run code
deployed directly from master.”

“Rapid release at massive scale” https://engineering.fb.com/2017/08/31/web/rapid-release-at-massive-scale/

https://engineering.fb.com/2017/08/31/web/rapid-release-at-massive-scale/

Deployment Example: Facebook.com

Post-2016: Truly continuous releases from master branch

100% production

[Savcoast et | ||| [T -

https://engineering.fb.com/2017/08/31/web/rapid-release-at-massive-scale/

https://engineering.fb.com/2017/08/31/web/rapid-release-at-massive-scale/

Continuous Delivery Tools

* Auto-deploys from version control to a staging environment + promotes
through release pipeline

* Monitors key performance indicators to automatically take corrective actions

 Example: “Spinnaker” (Netflix, ¢ 2015, MIT License)

Find image Cutover Deploy PROD Tear down Destroy
Start from TEST Deploy CANARY manual approval (red/black) CANARY old PROD
Wait 30 mins Wait 2 hrs

Example CD pipeline from Spinnaker’s documentation: https://spinnaker.io/docs/concepts/#application-deployment

https://spinnaker.io
https://spinnaker.io/docs/concepts/#application-deployment

Continuous Delivery Relies on Monitoring

Consider both direct (e.g. business) metrics, and indirect (e.g. system) metrics

 Hardware
* \Voltages, temperatures, fan speeds, component health
 OS
« Memory usage, swap usage, disk space, CPU load
* Middleware
 Memory, thread/db connection pools, connections, response time
* Applications

* Business transactions, conversion rate, status of 3rd party components

Tools for Monitoring Deployments

» Nagios (c 2002, GPL): Agent-based architecture (install agent on each
monitored host), extensible plugins for executing “checks” on hosts

 Three significant forks: Icinga (c 2009), Shinken (c 2009), Naemon (c 2015)

*icinca

Q. Search ... Q Searct T
o o
ass o0 RN
:z= Dashboard &Q_\Qo éb& ; & Q‘;) &Q& * o 9@(@
9 >
O Problems ~ oo"»'o c;a»@z R "9@"’\ &2 e?’b \\0 ‘30(9 ‘QQ:??) \30600"' 009'39’ (b\,&
AN ITNTF Py S LS P ¢ £ & ® R &
Host Problems OQ OQ 0& 6‘6) &6 S“‘o Q‘a(\ s&'& -\(-.-'S\ \o'z' “\e .g\e’ QS\{" Q'\Q Q°@ © c,\° é\") c}‘) ,,09 c’,;b &@@ ™ 2
Service Prablems esxi01
Service Grid esxi02
Current Downtimes esxio3
. . esxi04
'} Overview eSxi05
D History esxi06
esxio7 @ @ L 28 O .

Monitoring can help identify operational issues
Specialized tooling for building dashboards

34078

Overall Cluster Memory Usage

3.20TB

3718

280TB

00:00 02:00 04:00

1600 Ghz

1400 Ghz

1200 Ghz

1000 Ghz

800 Ghz

600 Ghz

400 Ghz

200 Ghz

00:00 02:00 04:00

06.00 08:00 10:00 12:0C 14:00 16:00

Overall Cluster CPU Usage

06:00 08:00 10:00 12:00 14:00

Grafana (AGPL, c 2014)

16:00

;i Active Memory O
106G
—time —value _field _measurement fuzzer host target
2022-09-0513:52:00 10.35G active mem afiplusplus_with_knobs G4PlusVM136 sqlite3
86
S 6G
=
4G
18:00 20:00 2200 2022-09-05 20:00:00 2022-09-06 08:00:00
CPU Usage
40
— e 35 l
WA N‘}WM\J)‘M
30
,[25
20 ’
15
10
un Ko
2022-09-05 20:00:00 2022-09-06 08:00:00
18:00 20:00 22:00

InfluxDB (MIT license,

c 2013)

Continuous Delivery Tools Take Automated Actions
Automated roll-back of updates at Netflix based on SPS

SPS Legend: M Experiment Il Control

PROD:US-EAST-1 o & W £ =& Log PROD:US-EAST-1

SPS Server Successes (License Requests)
— - 20.0 4 ==
404 == _]l
) N
| L~ | | -
L 15.0 = — .
E] 10.0 -
2.0 4 ‘
1.04 | 3.04 ‘—
0.0 ' [' ! I ! I ! 0.0 1 Y I 1 1 | I |
10: 27 10: 30 10:33 10: 36 10: 39 10: 42 10: 45 10: 48 10: 27 10: 30 10:33 10: 36 10: 39 10: 42 10: 45 10: 48

MONITORING!

https://www.youtube.com/watch?v=gyzymLlIj9ag

https://www.youtube.com/watch?v=qyzymLlj9ag

From Monitoring to Observability

Understanding what is going on inside of our deployed systems

Overall Cluster Memory Usage

34078
3.20TB
37TB

280TB . —

00:00 02:00 04:00 06.00 08:00 10:00 12:00 14:00 16:00 18:00

Overall Cluster CPU Usage

1600 Ghz
1400 Ghz - — |
1200 Ghz H
1000 Ghz
800 Ghz
600 Ghz B
400 Ghz : S —

200 Ghz

00:00 02:00 04:00 06:00 08:00 10:00 12:00 14:00 16:00 18:00

Grafana (AGPL, c 2014)

20:00

20:00

22:00

22:00

2022-09-05 20:

::: Active Memory O
106G
~time —value _field _measurement fuzzer host target
2022-09-0513:52:00 10.35G active mem afiplusplus_with_knobs G4PlusVM136 sqlite3
8G
66
4G
2022-09-05 20:00:00 2022-09-06 08:00:00
CPU Usage
40
35 ’ \J'
Wi (WVN ,/L‘\)\'W'J l."\ M{“f\] Wd‘-’_ij
30
25

00:00 2022-09-06 08:00:00

InfluxDB (MIT license, ¢ 2013)

From Monitoring to Observability

Understanding what is going on inside of our deployed systems

7 GKE Enhanced Dashboard v + Addwidgets

f ISt amespace jeployment yer ! f .
Saved Views - w v * v . - . - * v * - . o * -

s o
**=4es by condition Nodes DaemonSets
Example dashboard by DataDog: 109
https://www.datadoghg.com/blog/ 909
gke-dashboards-integration- nodes
iImprovements/
Deployments Services
contain':r‘level, this dashboard 40

provides you with broad
visibility into the health and
performance of your GKE
clusters so that you can be
better prepared to address
potential issues.

~
o

517 559

CPU usage by container

10:30

Memory usage by container

CPU-intensive n...

0.27
0.25
0.25
0.24
0.24
0.24
0.23
0.23
0.23
0.22

gke-demo...
gke-demo...
gke-demo...
gke-demo...
gke-demo...
gke-demo...
gke-demo...
gke-demo...
gke-demo...
gke-demo...

Network rate

CPU usage

0.5'~.’)‘” l";&
WIEIINI-IW .-‘.‘°hl.d. i'l

| - M
n... av...
n... av..
h av

10:30
Avg
0.19
0.2

027

Max
027
035

042

inh Past 1 Hour

Nodes

ON High Density Mode

Memory-intensi...

1.

Value
0.17
0.16
0.28

1,005
980
631
603
602
567
563
559
552
543

gke-ka...
gke-ka...
gke-d...
gke-d...
gke-us...
gke-d...
vm-8b...
gke-d...
gke-d...
gke-d...

Network errors

GKE monitoring guides:
* Monitor GKE with Datadog
» Datadog Support for GKE

Autopilot

l .
p]
WA,
[J

Tags

host:gke-de

host:gke-de
- host:oke-de

X X .8 BEE-E R X
o e 4 . § ﬁr e U J
If some graphs appear empty, ‘

check out the following:

More v

v Control Plane

For the data in this section to populate you must enable GKE control plane metrics. Control plane metrics give you
visibility into the operation of the Kubernetes control plane, which is managed by Google in GKE.

API Server Latency By Method Controller Manager Node Collector... Scheduler Latency by Result

F 01

CPU-intensi...

5.84
5.20
5.17
465
447
3.94
3.66
3.22
3.10

- A

user-db-2
user-db-4
user-db-3
user-db-1
user-db-0
user-db-5
user-db-8
user-db-7
mongo-...

4h

1030
Metric Avg
Recelv, 71.81 MiB
Receiv... 11420 MiB
Receiv. 83.81 MiB/s
CPU usage

10 '.w

'
s \

10.45

Max
13338 MiB
204.07 Ml

140 68 MiB/s

A hichady R, e g

":“/d/-hf.%vw- ey VAR N Ay g

15.7 m., 38.7 n

Max
163 n B3I n

1700
Value
75 % I'l R
73.33 MiB

97.18 MiB/s

Pods

10:15

Tags

host:gke-demo-1128...

host:.gke-demo-1128

host:oke-demo-1128

Memory-int... 4h

Value

148 m..

214 n

18.64
15.29
10.89
10.72

5.04

produ...

dsm-d...
dev-ds...
user-d...
user-d...
user-d...
user-d...
kafka-...

Memory usage

EVvents &

-

« III Q

I & 9

L———/‘M——

_—

10:30

T M
h av
h av
h av
10:30
Metric
Received By
Received By
Received By

Memory usage

16

Avg

326 MIB
395 MR

474 MR

——

11X

Max Value
367 MB 320 MiB
437 Wil 411 MiB
523 MB 484 MIB

11:00

Max Value

0 0
0 0
0 0

T M
p M
p M

10:30

Avg
1452

1434,

1474

145.6

Max Value
144 .2...

143.2..

https://www.datadoghq.com/blog/gke-dashboards-integration-improvements/
https://www.datadoghq.com/blog/gke-dashboards-integration-improvements/
https://www.datadoghq.com/blog/gke-dashboards-integration-improvements/

Consider Observability of Apps, Too

Track latency, error rates, etc. to discover problems before

Akita overview APIModel Metrics & Errors Change Report Alerts Diagnostics

Project Deployment
akita-staging v Staging v
- . T.
Metncs & Errors Percentile imerange Custom

Last updated: 10:58:10 AM 2
po0 p95 p99 p99.9 C Last 12 hours v

Request Count Duration (p90)

2K . ﬁ

== 400ms V\/_/\M/WM\/\/\/\/\M
s 300ms 1
1K 200ms 4
500 4 100ms
Wed 18 03 AM 06 AM 08 AM Wed 18 03 AM 06 AM 09 AM

Search for endpoints
= Filters Clear X N/ Methed Endpoint Status p90 ¥ Count

HTTP Methods (5) A

| =
== :
m 0 I m api.staging.akita.software/bulk 202 0.6ms 6137 5
| =
I [oer |

api.staging.akita.software/vi/services/{service_id}/learn/{learn_session_id}/async_reports 200 380ms 135,586 >

10.255.231.17:8080/{arg1} 200 2.3ms 10080 >

% 23 o

Endpoint Categories (1) A

api.staging.akita.software/vi/services/{service_id}/telemetry/client/deployment/production 200 31ms 4,608 >

10.255.231.17:8080/ 200 1.6ms 4,320

Uncategorized 24

Screenshot: https://www.akitasoftware.com/blog-posts/plug-and-play-endpoint-views-for-metrics-errors

https://www.akitasoftware.com/blog-posts/plug-and-play-endpoint-views-for-metrics-errors

Monitoring Services Take Automated Actions

;éiClﬂGA

Search ...

sz Dashboard

© Problems

I} Overview

D History

Event Grid
Event Overview

Notifications

Timeline

& Documentation

£ System

#~ Configuration

& jon

1T 2 3 4 5 6 7

Q Search...) {
OK :
Slurm Nodes on nagios
2022-02-18 0 nod hable, 332 hab?
O - Y u 1 1
084905 noaes nreacha e, reacna e
OK .
Slurm Nodes on nagios
2022-02-18) _ . o .
08:49:05 OK - 0 nodes unreachable, 332 reachable

Slurm Nodes on nagios
WARNING - 7 nodes unreachable, 326 reachable

Slurm Nodes on nagios
WARNING - 7 nodes unreachable, 326 reachable

CRITICAL
2022-02-18
08:42:05

Slurm Nodes on nagios
CRITICAL - 65 nodes unreachable, 161 reachable

CRITICAL
2022-02-18
08:42:05

Slurm Nodes on nagios
CRITICAL - 65 nodes unreachable, 161 reachable

Slurm Nodes on nagios

WARNING - 12 nodes unreachable, 205 reachable

Slurm Nodes on nagios

WARNING - 12 nodes unreachable, 205 reachable

A Slurm Nodes on nagios

2022-02-18
08:34:07

CRITICAL - 204 nodes unreachable, 145 reachable

Sent to jon

Sent to icingaadmin

Sent to jon

Sent to icingaadmin

Sent ta icingaadmin

Sent to jon

Sent to icingaadmin

Sent to jon

Sent to icingaadmin

Current Service State

nagios
1
127.0.0.1

UP
since 2021-1

0K i
Service: Slurm Nodes
for Im 52s

Event Details

Type Notification

Start time 2022-02-18 08:42:05
End time 2022-02-18 08:42:05
Reason Normal notification
State B CRITICAL
Escalated No

Contacts notified 2

Output

CRITICAL - 65 nodes unreachable,

24 25 » # 25 ~ Sortby Notification Start ~ |Z

161 reachable

PaasS is the Simplest Choice for App Deployment

 Platform-as-a-Service (PaaS) products provide common components that
most apps need, fully managed by the vendor: load balancer, monitoring,
application server

- Examples: Heroku, AWS Elastic Beanstalk, Google App Engine

» Some PaaS products are designed to deploy apps as single functions that
are invoked when a web request is made, and don’t run otherwise
(“function-as-a-service”)

- Examples: AWS Lambda, Google Cloud Functions, Azure Functions
« Some PaaS products also provide databases and authentication

« Examples: Google Firebase, Back4App

Application

Middleware

Operating System

Virtualization

Physical Server

Storage

Network

Physical data center

PaaS

Heroku is a Platform as a Service

« Takes as input: a web app (e.g. NodedS app)

» No need to provide a container, entry point to our code is
enough, e.g. “npm start”

HTTP requests

* Provides: hosted web app at our choice of URL, with ability to
scale resources up/down on-demand l

» Load balancer is fully managed by Heroku, makes scaling Load balancer +
transparent traffic monitor

» Can auto-scale down to use no resources, then only launch / \

a container once a request has been received Container Container

» Dashboard provides monitoring/reporting Our NodeJS App ~ Our NodeJS App

Next Steps

» Thursday’s discussion:
» Canopy (end-to-end performance tracing for large systems at Facebook)

» Pay more attention to the problem that they are solving and what the
evaluation shows as opposed to how they implemented this

» Study of configuration evolution in cloud systems

» Next week: Collaboration in SE, project status update Tues by 11am

