
© 2023 Jonathan Bell, CC BY-SA

Collaboration & Knowledge 
Sharing
Advanced Software Engineering 
Spring 2023 

http://creativecommons.org/licenses/by-sa/4.0/


Why Collaboration? The Bus Factor
Even if one person can own all of a project, they shouldn’t be relied to



Consider Collaboration and Survivorship in Open Source, Too

Bus factor, top 1,000 projects on GitHub by stars (2023)

https://metabase-public.metabaseapp.com/public/dashboard/38598aee-ee65-4d6d-b459-5e046c3404d4 

GitHub Successor Feature (added 2022)

https://metabase-public.metabaseapp.com/public/dashboard/38598aee-ee65-4d6d-b459-5e046c3404d4
https://docs.github.com/en/account-and-profile/setting-up-and-managing-your-personal-account-on-github/managing-access-to-your-personal-repositories/maintaining-ownership-continuity-of-your-personal-accounts-repositories


Why Collaboration? “The 10x Engineer”
No one person can complete the project alone (or if they can, the project might be too small!)



Why Collaboration? Software Engineering Draws on Many Skills
Nobody is an expert in everything

• Product management


• Project management


• System-level design and architecture


• Unit-level design


• Development


• Operations


• Maintenance



Collaboration: Why else?
(Brainstorming from class)

• Brainstorming + ideation results in better results (both for the thing you are building, also for the 
processes)


• Better opportunities for detecting design flaws early on


• Specialization of skills (even within “development”)


• Diversity of expertise, particularly with project failure modes


• Operational resilience - and human resource retention


• Extending the working hours


• Diversity of team members, broadly construed (by geography, by background, by abilities)


• Forcing function for documentation/knowledge sharing



Collaboration is hard: Brooks’ Law

“Adding manpower to a late 
software project makes it 
later”

Fred Brooks, 1975



Brooks’ Law: Historical Context

AMC’s Halt and Catch Fire, Season 1 Episode 5

https://www.youtube.com/watch?v=jLpfGGdJlAY


How do we structure teams efficiently?

Examining Brooks’ Law: 
“Adding manpower to a 
late software project 
makes it later” 
How many 
communication links are 
needed to finish a task?



Agile Favors “Two-Pizza” Teams

• Q: How many people on a team?


• A: “No more than you could feed with two 
pizzas”


• Rationale:


• Decrease communication burdens


• Focus conversations to relevant topics



Agile Favors “Product” teams, not ”Platform” teams
Example: Facebook mobile teams (with platform organization)

Group messages 
Chat 
Upcoming Events 
Birthdays 
Photo Albums 
Photo Picker

Android

Group messages 
Chat 
Upcoming Events 
Birthdays 
Photo Albums 
Photo Picker

iOS

Group messages

Chat

Upcoming Events

Birthdays

Photo Albums

Photo Picker

Desktop/Web

Product Experts Platform Experts

Group messages

Chat

Upcoming Events

Birthdays

Photo Albums

Photo Picker

Group messages

Chat

Upcoming Events

Birthdays

Photo Albums

Photo Picker

Messages

Events

Photos

Android

iOS

Engineering Teams

https://www.youtube.com/watch?v=Nffzkkdq7GM

https://www.youtube.com/watch?v=Nffzkkdq7GM


Agile Favors “Product” teams, not ”Platform” teams

Group messages 
Chat 
Upcoming Events 
Birthdays 
Photo Albums 
Photo Picker

Android

Group messages 
Chat 
Upcoming Events 
Birthdays 
Photo Albums 
Photo Picker

iOS

Messages

Events

Photos

Android

iOS

Engineering Teams

Group messages

Chat

Upcoming Events

Birthdays

Photo Albums

Photo Picker

Desktop/Web

Product Experts

Group messages

Chat

Upcoming Events

Birthdays

Photo Albums

Photo Picker

Group messages

Chat

Upcoming Events

Birthdays

Photo Albums

Photo Picker

Example: Facebook mobile teams (with platform organization)

https://www.youtube.com/watch?v=Nffzkkdq7GM

https://www.youtube.com/watch?v=Nffzkkdq7GM


Create Intentional Opportunities for Knowledge Sharing
Ideally, scale linearly (or sub linearly) with org growth

• Create onboarding processes, onboard multiple people concurrently


• Make One System To Rule Them All for wikis/chat/knowledge sharing, consider access-management


• Hackathons - group programming/development events to make “spike efforts”


• Recognize long-term impacts, not just short-term impacts (particularly around tool development)


• Put people in a room and make them explain stuff to each other (design conflict resolution meetings). Ensure that there is a 
process for “keeping everyone on the same page”


• Structured mentoring systems (including pair programming)


• Code review


• Asynchronous communication channels within teams, for troubleshooting + to create a searchable system


• Encourage organic, but disciplined meetings that have tangible and documented artifacts


• Experiment with workspace furniture

(Brainstorming from class)



Pair Programming as a Mentoring Activity

• Two programmers work together at one computer, one “driving,” one 
“navigating”


• Survey of professional programmers (2001):


• 90% “enjoyed collaborative programming more than solo programming”


• 95% were “more confident in their solutions” when pair programmed


• Provides long-term benefits: reduces defects by 15%, code size by 15%


• Increases costs by 15% to 100% compared to single developer on the task

Cockburn and Williams. The Costs and Benefits of Pair Programming, (In: Extreme Programming Explained 2001)



Pair Programming Improves Tool Diffusion
Emerson Murphy-Hill & Gail C. Murphy, CSCW 2011

• Peer observation and recommendation shown to be more effective at 
discovering new tools than other knowledge sharing approaches


• Examples: Hot keys, especially for CLI; IDE tricks


• Most common in 2011 survey: “Open Type” feature in Eclipse, developer tools 
in web browser

“Peer interaction effectively, yet infrequently, enables programmers to discover new tools”, Emerson Murphy-Hill & Gail C. Murphy, CSCW 2011

https://dl.acm.org/doi/10.1145/1958824.1958888


Code Review as a Knowledge Sharing Opportunity

“Modern Code Review: A Case Study at Google”, Sadowski et al, ICSE 2018 “Expectations, Outcomes, and Challenges of Modern 
Code Review”, Bacchelli & Bird, ICSE 2013



Standardize and Document Best Practices
Wikis, blogs, tech talks scale-out more than 1:1 mentoring

• Rule of thumb: once you have explained 
something to more than two people, maybe you 
should write a blog post


• Effective organizations cultivate programs to 
organically collect and share knowledge and 
best practices


• Example: Google “Testing on the Toilet” (c 2006)



Do Developers Discover New Tools On The Toilet?
Murphy-Hill et al, ICSE 2019

• Exposure to the flyers significantly increased and sustained adoption of the 
tools advertised on them


• Provided more “memorability” compared to social media (location + curation)


• Limitations


• Not evenly posted and updated globally (volunteer effort; minority tax)


• Editorial curation is difficult


• Not all episodes are relevant to all teams



How Developers use Social Media
“How Social and Communication Channels Shape and Challenge a Participatory Culture in Software Development” 
Storey et al, TSE 2015

• On average, developers use eleven channels to stay up-to-date on 
development activities



Anti-Patterns for Teams
(CIA Sabotage Guide c 1944)



Three Pillars of Social Skills for Collaboration
A pattern for effective teams

• Pillar 1: Humility: You are not the center of the universe (nor is your code!). 
You’re neither omniscient nor infallible. You’re open to self-improvement.


• Pillar 2: Respect: You genuinely care about others you work with. You treat 
them kindly and appreciate their abilities and accomplishments.


• Pillar 3: Trust: You believe others are competent and will do the right thing, 
and you’re OK with letting them drive when appropriate.

From “Debugging Teams” by Ben Collins-Sussman and Brian Fitzpatrick

https://learning.oreilly.com/library/view/debugging-teams/9781491932049/


HRT Example: Code Review

“Man, you totally got the control flow wrong on that method there. You should be 
using the standard foobar code pattern like everyone else”

This is personal Is this really that black and white?

Are we demanding a specific change? Everyone else does it right, 
therefore you are stupid

From “Debugging Teams” by Ben Collins-Sussman and Brian Fitzpatrick

https://learning.oreilly.com/library/view/debugging-teams/9781491932049/


HRT Example: Code Review

From “Debugging Teams” by Ben Collins-Sussman and Brian Fitzpatrick

“Man, you totally got the control flow wrong on that method there. You should be 
using the standard foobar code pattern like everyone else”

“Hmm, I’m confused by the control flow in this section here. I wonder if the foobar 
code pattern might make this clearer and easier to maintain?

Humility! This is about me, not you

https://learning.oreilly.com/library/view/debugging-teams/9781491932049/


HRT Example: Asking and Answering Questions

• Questions:


• “I can't get the code from project foo to compile. Why is it broken?” Vs


• “The code from project foo doesn't compile under Nulix version 6.2. I've read the FAQ, 
but it doesn't have anything in it about Nulix-related problems. Here's a transcript of my 
compilation attempt; is it something I did?”


• Answers:


• Help others learn from the question: “How would that FAQ need to be updated so that 
nobody has to answer this question gain?”


• Demonstrate your skills (how you reached the answer) rather than your omniscience 
(providing the minimal, but correct answer)

Examples via the interesting site: “How To Ask Questions The Smart Way” by Eric S Raymond & Rick Moen

http://www.catb.org/~esr/faqs/smart-questions.html


Knowledge Sharing Case Study: Reddit 3/14/2023
Context: Reddit has been working on standardizing and improving infrastructure for reliability

https://www.reddit.com/r/RedditEng/comments/11xx5o0/you_broke_reddit_the_piday_outage/

https://www.reddit.com/r/RedditEng/comments/11xx5o0/you_broke_reddit_the_piday_outage/


Knowledge Sharing Case Study: Reddit 3/14/2023

https://www.reddit.com/r/RedditEng/comments/11xx5o0/you_broke_reddit_the_piday_outage/

“The route reflectors were set up several years 
ago by the precursor to the current Compute 
team. Time passed, and with attrition and 
growth, everyone who knew they existed moved 
on to other roles or other companies. Only our largest 
and most legacy clusters still use them. So there was nobody with the 
knowledge to interact with the route reflector configuration to even realize there 
could be something wrong with it or to be able to speak up and investigate the 
issue. Further, Calico’s configuration doesn’t actually work in a way that can be 
easily managed via code. Part of the route reflector configuration requires 
fetching down Calico-specific data that’s expected to only be managed by their 
CLI interface (not the standard Kubernetes API), hand-edited, and uploaded 
back. To make this acceptable means writing custom tooling to do so. 
Unfortunately, we hadn’t. The route reflector configuration was thus committed 
nowhere, leaving us with no record of it, and no breadcrumbs for engineers to 
follow. One engineer happened to remember that this was a feature we utilized, 
and did the research during this postmortem process, discovering that this was 
what actually affected us and how.”

https://www.reddit.com/r/RedditEng/comments/11xx5o0/you_broke_reddit_the_piday_outage/


Knowledge Sharing Case Study: Reddit 3/14/2023
Technical cause for the failed upgrade: configuration parameter renamed

https://github.com/kubernetes/enhancements/blob/master/keps/sig-cluster-lifecycle/kubeadm/2067-rename-master-label-taint/README.md 

KEP-2067: Rename the kubeadm "master" label and taint

“Nearly every critical Kubernetes cluster at Reddit is bespoke in one way or another. 
Whether it’s unique components that only run on that cluster, unique workloads, only 
running in a single availability zone as a development cluster, or any number of other 
things. This is a natural consequence of organic growth, and one which has caused more 
outages than we can easily track over time.”

Root cause for the failed upgrade: Inconsistent, undocumented configurations

https://www.reddit.com/r/RedditEng/comments/11xx5o0/you_broke_reddit_the_piday_outage/

https://github.com/kubernetes/enhancements/blob/master/keps/sig-cluster-lifecycle/kubeadm/2067-rename-master-label-taint/README.md
https://www.reddit.com/r/RedditEng/comments/11xx5o0/you_broke_reddit_the_piday_outage/


Responding to Failures

In software, in humans, and in 
processes. 

How do we learn: 
• What went well? 
• What went wrong? 
• Where we got lucky? 
• How do we prevent it from 

happening again? 



How Not to Respond to Failures

1. Some engineer contributes to failure or incident


2. Engineer is punished/shamed/blamed/retrained


3. Engineers as a whole become silent on details to management to avoid being 
scapegoated


4. Management becomes less informed about what actually is happening, do 
not actually find/fix root causes of incidents


5. Process repeats, amplifying every time



Blameless Post-Mortems

• What actions did you take at the time?


• What effects did you observe at the time?


• What were the expectations that you had?


• What assumptions did you make?


• What is your understanding of the timeline of events as they occurred?



Google’s Example Postmortem

https://sre.google/sre-book/example-postmortem/


Blameless Post-Mortems: Real World Example



Conducting Postmortems

• Apply this technique after any event you would like to avoid in the future


• Apply this to technical and non-technical events


• Focus on improvement, resilience, and collaboration: what could any of the 
actors have done better?


• Google’s generic postmortem template

https://docs.google.com/document/d/1ob0dfG_gefr_gQ8kbKr0kS4XpaKbc0oVAk4Te9tbDqM/edit

