Collaboration & Knowledge
Sharing

Advanced Software Engineering
Spring 2023

© 2023 Jonathan Bell, CC BY-SA



http://creativecommons.org/licenses/by-sa/4.0/

Why Collaboratlon’? The Bus Factor

ZD el TS Ny o NRER P e o N N 1% Wil

.Even 1 one person can own aII of a prOJect they shouldn’t be relled to

4 “Q ‘5
A i

al!

i
i




Consider Collaboration and Survivorship in Open Source, Too

Bus factor, top 1,000 projects on GitHub by stars (2023) GitHub Successor Feature (added 2022)

Distribution
418

Ensure the future of your work!
Consider inviting another GitHub user to be your successor.

4100
a4 U

sitories

Invite a successor

Repos

14
8 12 ¢ 5 3 4 2 1 2 1 1 1 2 1 1

0 2 4 6 8 10 12 14 16 20 28 32 34 42 52 64 72 78 126 128

Bus Factor

https://metabase-public.metabaseapp.com/public/dashboard/38598aee-ee65-4d6d-b459-5e046¢c3404d4



https://metabase-public.metabaseapp.com/public/dashboard/38598aee-ee65-4d6d-b459-5e046c3404d4
https://docs.github.com/en/account-and-profile/setting-up-and-managing-your-personal-account-on-github/managing-access-to-your-personal-repositories/maintaining-ownership-continuity-of-your-personal-accounts-repositories

Why Collaboration? “The 10x Engineer”

No one person can complete the project alone (or if they can, the project might be too small!)

ROCK STAR DEVELOPER

WERE LOOKING FOR A
ROCK STAR DEVELOPER
TO JOIN QUR TEAM

What makes a 10x

Developer:

f’) Davide de Paolis Mar 11, 2019 - 6 min read

I =2
) o4 N
an
\ ". B ."
et L]
H - [
' ‘.//_-\; : \
[ il '\ .q“
: f W
KR )
—0: - —Q‘A‘ vl‘. b 'l

(QAsKELETON_CLAW

SKELETONCLAW.COM



Why Collaboration? Software Engineering Draws on Many Skills

Nobody iIs an expert in everything

 Product management

* Project management

¢ System-level design and architecture
* Unit-level design

 Development

e Operations

e Maintenance



Collaboration: Why else?

(Brainstorming from class)

* Brainstorming + ideation results in better results (both for the thing you are building, also for the
Processes)

» Better opportunities for detecting design flaws early on

» Specialization of skills (even within “development”)

» Diversity of expertise, particularly with project failure modes

* Operational resilience - and human resource retention

* Extending the working hours

* Diversity of team members, broadly construed (by geography, by background, by abilities)

* Forcing function for documentation/knowledge sharing



Collaboration is hard: Brooks’ Law

“"Adding manpower to a late
software project makes it

174
later
Fred Brooks, 1975




Brooks’ Law: Historical Context

AMC'’s Halt and Catch Fire, Season 1 Episode 5


https://www.youtube.com/watch?v=jLpfGGdJlAY

How do we structure teams efﬁmently’?

i e V) %1 o 7. =3

Examining Brooks’ Law: ol &y
“Addi Ng Manpower to a 5:1\5 ‘b‘ ‘ ‘};;\ P \ |
makes it later” e 8| g

How many BN Q*“ Vs Aty
communication links are e N VN %
needed to finish a task? | i ek LS o




;

" & Agile Favors “Two-Pizza” Teams

» Q: How many people on a team?

* A: “No more than you could feed with two
pizzas”



Agile Favors “Product” teams, not "Platform” teams
Example: Facebook mobile teams (with platform organization)

Engineering Teams

. Android
I0S

Desktop/Web

Group messages

Chat

Upcoming Events
Birthdays

Photo Albums

Photo Picker

Product Experts

Android

10S

Group messages
Chat

Upcoming Events
Birthdays

Photo Albums

Photo Picker

Platform Experts

https://www.youtube.com/watch?v=Nffzkkdq7GM



https://www.youtube.com/watch?v=Nffzkkdq7GM

Agile Favors “Product” teams, not "Platform” teams
Example: Facebook mobile teams (with platform organization)

Desktop/Web Android I0S
nnnnnnnnnnnnnn Group messages Group messages Group messages
Messages
Chat Chat Chat
. Events
Upcoming Events Upcoming Events Upcoming Events
. Photos
Birthdays Birthdays Birthdays
Android
. Photo Albums Photo Albums Photo Albums
10S Photo Picker Photo Picker Photo Picker

Product Experts

https://www.youtube.com/watch?v=Nffzkkdq7GM



https://www.youtube.com/watch?v=Nffzkkdq7GM

Create Intentional Opportunities for Knowledge Sharing

Ideally, scale linearly (or sub linearly) with org growth
(Brainstorming from class)

* Create onboarding processes, onboard multiple people concurrently

Make One System To Rule Them All for wikis/chat/knowledge sharing, consider access-management
Hackathons - group programming/development events to make “spike efforts”

Recognize long-term impacts, not just short-term impacts (particularly around tool development)

Put people in a room and make them explain stuff to each other (design conflict resolution meetings). Ensure that there is a
process for “keeping everyone on the same page”

Structured mentoring systems (including pair programming)

Code review

Asynchronous communication channels within teams, for troubleshooting + to create a searchable system
Encourage organic, but disciplined meetings that have tangible and documented artifacts

Experiment with workspace furniture



Pair Programming as a Mentoring Activity

» Two programmers work together at one computer, one “driving,” one
“navigating”

» Survey of professional programmers (2001):
* 90% “enjoyed collaborative programming more than solo programming”
» 95% were “more confident in their solutions” when pair programmed
* Provides long-term benefits: reduces defects by 15%, code size by 15%

* Increases costs by 15% to 100% compared to single developer on the task

Cockburn and Williams. The Costs and Benefits of Pair Programming, (In: Extreme Programming Explained 2001)



Pair Programming Improves Tool Diffusion
Emerson Murphy-Hill & Gail C. Murphy, CSCW 2011

* Peer observation and recommendation shown to be more effective at
discovering new tools than other knowledge sharing approaches

- Examples: Hot keys, especially for CLI; IDE tricks

* Most common in 2011 survey: “Open Type” feature in Eclipse, developer tools
IN web browser

Peer Observation  penpenfrezfinofino|vir foac Peer Observation  Benfoaponped[eu Envffez iac faokenfosfvac
Peer Recommendation ke Peer Recommendation  Beveafrez[ci Buskenac jvac [vir
Tool Encounter  Exvfw|ai [ai Busbushiad iac Rosfzac Tool Encounter  [ai piazac
Tutorial  Benbonfka [kai Roslvac vac lzac Tutorial  [aarEnulka
Written Description  cacpoxpon Written Description  fso
Twitter or RSS Feed  |anrfrez|ka Twitter or RSS Feed  aarpecponfosfeac
Discussion Thread [pecpoxponfos Discussion Thread [eu ac]vir
Figure 2: Histogram of the most frequent discovery modes. Figure 3: Histogram of the most effective discovery modes.

“Peer interaction effectively, yet infrequently, enables programmers to discover new tools”, Emerson Murphy-Hill & Gail C. Murphy, CSCW 2011



https://dl.acm.org/doi/10.1145/1958824.1958888

Code Review as a Knowledge Sharing Opportunity

: Ranked Motivations From Developers
Project lead Top [ ] Second [  Third N
Education Finding defects ]
Vai o Maintaining Code Improvement [ ]
nj;”:’t:’n’ng norms Gatokeoni Alternative Solutions [ ]
- atekeepin
Readability D eve I o pe r ping Other Knowledge Transfer [ ]
reviewers teams Team Awareness |
Ed . Improving Dev Process -
ucation
. - ; Share Code Ownership -
Maintaining Education ' rooid Buld Break —
norms ccident prevention void Build Breaks
Track Rationale [ ]
New team Other team Team Assessment ]
members members H 200 400 00
Responses
“Modern Code Review: A Case Study at Google”, Sadowski et al, ICSE 2018 “Expectations, Outcomes, and Challenges of Modern

Code Review”, Bacchelli & Bird, ICSE 2013



Standardize and Document Best Practices

Wikis, blogs, tech talks scale-out more than 1:1 mentoring

* Rule of thumb: once you have explained
something to more than two people, maybe you

should write a blog post

» Effective organizations cultivate programs to
organically collect and share knowledge and

best practices

 Example: Google “Testing on the Toilet” (c 2006)

Episode 284
Testing on the Toilet Presents... Healthy Code on the Commode Aprii 302013
QTB\» Automatic formatting for C++ |
6 ;{ by Daniel Jasper in Munich @

-

Are you tired of hitting space and backspace more often then anything clse while coding? Are you
annoyed by fighting over parameter and comment alignment in code reviews?

Consistent formatting allows readers to quickly scan and interpret code, dedicating their aitention to
what the code does and hew it works. Without this consistency, effort is wasted parsing the wide variety
of personal styles code might follow. However, keeping your code formatting nice and shiny is not a
good task for humans. Luckily, we now have clang-format, wkich can do this tedious task for you.

Clang-format produces both readable and Google style-compliant code:

$ cat file.cc

int a;// clang-format can ..

int kbb; // .. align trailing comments.
f#dafine UNJDERSTAND MULTILINE MACROS int CC; int d;

LOS (INFO) <<".. <¢lign ovperators\n"<<"., and many more Lhings";

§ clang format file.cc style Google

int ay // clang-format can ..

int kbb; // .. align trailing comments.

#§dafine UNDERSTAND MULTILINE MACROS
int cc; \
int d;

LOSG (INFQ) << ".. align operators\n"

<
<< ".. and many nore thirgs";

Conveniently integrating with your editor, you can format the current statement or a selected
region (available for vim, emacs and eclipse - go/clarg-format). You can also reformat unified difTs, e.g.
in a CitC client, by:

$ g4 diff -du0 | /usr/lib/clang-format/clang-format-diff py

In addition to making the editor-based code development faster and more fun, consistently using clang-
format provides other advantages:

« Codereviewers don't even need to cons:der whethzr all your spaces are correct

+ Source files become fully machine editable, e.g. for AP] maintenance

So, give it a try and see how much fun it is to just type everything into a single line and let clang-format
do the rest. If you encounter clang-format messing up the formatting, e g. producing style guide
violations, please file @ bug on go/clang-formai-

clang-format Scyihe
Leamn how to use clang-format in your worcflow. Wart to see your dead code and auiomaticaly get rid of it?
hitp:/igo/clang-format hitp:'/go/scythe

Find out more: go/CodeHealth Read all TotTs online: http://tott




Do Developers Discover New Tools On The Toilet?
Murphy-Hill et al, ICSE 2019

» Exposure to the flyers significantly increased and sustained adoption of the
tools advertised on them

* Provided more “memorability” compared to social media (location + curation)
 Limitations

* Not evenly posted and updated globally (volunteer effort; minority tax)

» Editorial curation is difficult

* Not all episodes are relevant to all teams



How Developers use Social Media

“How Social and Communication Channels Shape and Challenge a Participatory Culture in Software Development”
Storey et al, TSE 2015

 On average, developers use eleven channels to stay up-to-date on
development activities

Content Recommenders
Project Coordination Tools

Face-to-face

Web Search

Rich Content
Private Discussions
Discussion Groups
Private Chat

Feeds and Blogs
News Aggregators
Code Hosting Sites

Public Chat

Developer Profile Sites

— Prof. Networking Sites

' Social Network Sites

~ | Social Bookmarking
=

5 | Q&A Sites
& Microblogs

Stay Up to Date
Find Answers
Learn

Discover Others

Connect With Others

Get and Give Feedback

Publish Activities

Watch Activities

Display Skills/ Accomplishments

Assess Others

Coordinate With Others

Legend:  0-10% | 10-20% | 20-30% | 30-40% | 40-50% [ {020/ N (0 SN/ 5.0 b/ ST T b T S (1
(percentage of survey respondents mentioning a channel being used for an activity)

TABLE 4
Channels used by our respondents and the activities they support.




Is

Anti-Patterns for Teams
(CIA Sabotage Guide ¢ 1944) . seecers ana supervicon

(11) General Interference withh Organizalions and
Production

(a) Organizations and Conferences

(1) Insist on doing everything thirough
“channels.” Never permit short-cuts to be taken
in order to expedite decisions.

(2) Make 'speeches.’” Talk as {requently as

possivle and at great length. Illustrate your

“points” by long anecdotes and accounts of per-
sonal experiences. Never hesitate to make a few
appropriate “patriotic' comments.

(J) When possible, refer all matters to
committees, for "“(urther study and considera-
tion."” Attempt to make the committees as large
as possible — never less than five.

(4) Bring up irrelevant issues as (requently
as possible.

(9) Haggle over precise wordings of com-
munications, minutes, resolutions.

(G) Reler back to matters decided upon at
the last meeting and attempl to re-open the
question ol the advisability of that decision.

(7) Advocate **caution." Be ''reasonable”
and urge your fellow-conlerees to Le '‘reason-
able" and avoid haste which mightl result in
embarvassments or difficulties later on.

(8) Be worried about the propriety of any
decision — ralse the question of whether such
action as is contemplated lies within the juris-
diction of the group ov whether it mlght confilct
with the policy of some higher echelon.

(1) Demand written orders.

(2) “"Misunderstand” orders, Ask endless
questions or engage In long correspondence

about such orders. Quibble over them when ¥ou
can,

(3) Do everythlng possible to delay the
dellvery of orders. Even though parts of an of€er
may be ready beforehand, don' t deliver it uRtil
it i3 completely ready,

(4) Don't order new working materlals
untll your current stocks have been virtually ex-
hausted, so that the slightest delay in filling
your order will mean a shutdown.

(5) Order high-quality materials which &re
hard to get. If you don't get them argue abéut

it, Warn that inferior materials will mean (n-
ferior work.

(6) In making work assignments, always

- sign out the unimportant jobs first. See that

the important jobs are assigned to Ineffclent
workers of poor machines.

(7) Insist on perfect work in relatively un-
important products; send back for refinishing
those which have the least flaw, Approve olher
del(ective parts whose flaws are not visible to
the naked eye.

(8) Make mistakes in routing so that parts

and materials will be sent to the wrong place in
the plant.

() When training new workers, give In-
complete or misleading instructions.

(10) To lower morale and with it, produc-
tion, be pleasant to ineficient workers; give
tham undeserved promotions. Discriminate
against efficient workers;, complain unjustly
about their work.

{11} Hold conferences when there Is more.
eritical work to be done,

(i2) Multiply paper work in plausible ways.
Start duplicate flles.

(13) Multlply the procedures and clearances
involved In issuing Lnstructlons, pay checks, and
50 on. See that three people have to approve
everything where one would do.,

(14) Appiy all regulations to the last letter,

(¢) Office Workers

(1) Make mistakes in quantities of materlal
when you are copying orders. Confuse similar
names. Use wrong addresses.

(2) Prolong correspondence wilh govern-
ment bureaus.

(3) Misfiie essential documents.

(4) In making carbon coples, make one 100.
few, so that an extra copying job will have to
be done

(5) Tell important callers the boss is busy
or talking on another telephone.

(6) Hold up mall until the next collection.

(7)) Spread disturblng rumors that sound
like inslde dope.

(d) Employees

(1) Work slowly. Think out ways Lo in-
crease fhe number of movemenls necessary on
your job: use a iight hammer instead of a heavy
oné, try to make s small wrench do when a big
one is necessary, use little force where consider
able force is needed, and s0 on.

(2) Contrive as many Interruptions to your
work as you can:. when changing the material
on which you are working, a8 you would on a
lathe'or punch, take needless time to do it. If
you are cutting, shaping or doing other meas-
ured work, measure dimensions- twice as often
as you need to. When you go te the lavatory,
spend & longer time there than js necessary.
Forget tools so that you will have to go back
after them.

30



Three Pillars of Social Skills for Collaboration

A pattern for effective teams

* Pillar 1: Humility: You are not the center of the universe (nor is your code!).
You’'re neither omniscient nor infallible. You’re open to self-improvement.

* Pillar 2: Respect: You genuinely care about others you work with. You treat
them kindly and appreciate their abilities and accomplishments.

* Pillar 3: Trust: You believe others are competent and will do the right thing,
and you’re OK with letting them drive when appropriate.

From “Debugging Teams” by Ben Collins-Sussman and Brian Fitzpatrick



https://learning.oreilly.com/library/view/debugging-teams/9781491932049/

HRT Example: Code Review

This is personal s this really that black and white?

“Man [Youkotal cot the control flo W on that method there. You should be

sing the standard| foobar code pattern |i =

Are we demanding a specific change? Everyone else does it right,

therefore you are stupid

From “Debugging Teams” by Ben Collins-Sussman and Brian Fitzpatrick



https://learning.oreilly.com/library/view/debugging-teams/9781491932049/

HRT Example: Code Review

“Man, you totally got the control flow wrong on that method there. You should be
using the standard foobar code pattern like everyone else”

‘Hmm, I’'m confused byjthe control flow in this section here. | wonder if the foobar

code pattern miglit make this clearer and easier to maintain?

Humility! This is about me, not you

From “Debugging Teams” by Ben Collins-Sussman and Brian Fitzpatrick


https://learning.oreilly.com/library/view/debugging-teams/9781491932049/

HRT Example: Asking and Answering Questions

 Questions:
» “] can't get the code from project foo to compile. Why is it broken?” Vs

» “The code from project foo doesn't compile under Nulix version 6.2. |'ve read the FAQ,
but it doesn't have anything in it about Nulix-related problems. Here's a transcript of my
compilation attempt; is it something | did?”

 Answers:

» Help others learn from the question: “How would that FAQ need to be updated so that
nobody has to answer this question gain?”

» Demonstrate your skills (how you reached the answer) rather than your omniscience
(providing the minimal, but correct answer)

Examples via the interesting site: “How To Ask Questions The Smart Way” by Eric S Raymond & Rick Moen



http://www.catb.org/~esr/faqs/smart-questions.html

Knowledge Sharing Case Study: Reddit 3/14/2023

Context: Reddit has been working on standardizing and improving infrastructure for reliability

2020
5

2021

2022

https://www.reddit.com/r/RedditEng/comments/11xx500/you_broke reddit the piday outage/



https://www.reddit.com/r/RedditEng/comments/11xx5o0/you_broke_reddit_the_piday_outage/

Knowledge Sharing Case Study: Reddit 3/14/2023

“The route reflectors were set up several years e
ago by the precursor to the current Compute
team. Time passed, and with attrition and
growth, everyone who knew they existed moved
on to other roles or other companies. only our largest

and most legacy clusters still use them. So there was nobody with the &
knowledge to interact with the route reflector configuration to even realize there
could be something wrong with it or to be able to speak up and investigate the
issue. Further, Calico’s configuration doesn’t actually work in a way that can be
easily managed via code. Part of the route reflector configuration requires
fetching down Calico-specific data that’'s expected to only be managed by their
CLI interface (not the standard Kubernetes API), hand-edited, and uploaded
back. To make this acceptable means writing custom tooling to do so.
Unfortunately, we hadn’t. The route reflector configuration was thus committed
nowhere, leaving us with no record of it, and no breadcrumbs for engineers to
follow. One engineer happened to remember that this was a feature we utilized, §
and did the research during this postmortem process, discovering that this was %
what actually affected us and how.”

https://www.reddit.com/r/RedditEng/comments/11xx500/you_broke reddit_the_ piday outage/



https://www.reddit.com/r/RedditEng/comments/11xx5o0/you_broke_reddit_the_piday_outage/

Knowledge Sharing Case Study: Reddit 3/14/2023

Technical cause for the failed upgrade: configuration parameter renamed

KEP-2067: Rename the kubeadm "master" label and taint

Motivation Risks and Mitigations
The Kubernetes project is moving away from wording that is considered offensive. A new working group Risk 1
WG Naming was created to track this work, and the word "master" was declared as offensive. A proposal Users not having enough visibility about the change, which results in breaking their setup.
was formalized for replacing the word "master" with "control plane". This means it should be removed
from source code, documentation, and user-facing configuration from Kubernetes and its sub-projects. Mitigation
Make sure the change is announced on all possible channels:
Goals

: . . Include "action-required" release notes in all appropriate stages of the change.
e Use "control-plane" instead of "master" in the key of the label and taint set by kubeadm. g PRIop 9 9

Notify #kubeadm and #sig-cluster-lifecycle channels on k8s slack.

. : . - Notify the SIG Cluster Lifecycle and kubernetes-dev mailing lists.
e Notify users in release notes and on communication channels such as the kubernetes-dev mailing

a
o
e Apply proper deprecation policies to minimize friction with users facing the change.
aQ
list. *

Ask Twitter / Reddit users to post about the change.

https://github.com/kubernetes/enhancements/blob/master/keps/sig-cluster-lifecycle/kubeadm/2067-rename-master-label-taint/ README.md

Root cause for the failed upgrade: Inconsistent, undocumented configurations

“Nearly every critical Kubernetes cluster at Reddit is bespoke in one way or another.
Whether it’'s unigue components that only run on that cluster, unique workloads, only
running in a single availability zone as a development cluster, or any number of other
things. This is a natural consequence of organic growth, and one which has caused more

outages than we can easily track over time.”
https://www.reddit.com/r/RedditEng/comments/11xx500/you_broke_reddit the_piday_outage/



https://github.com/kubernetes/enhancements/blob/master/keps/sig-cluster-lifecycle/kubeadm/2067-rename-master-label-taint/README.md
https://www.reddit.com/r/RedditEng/comments/11xx5o0/you_broke_reddit_the_piday_outage/

Responding to Failures

In software, in humans, and in
processes.

How do we learn:

« What went well?

« What went wrong?

« Where we got lucky?

« How do we prevent it from
happening again?

b

12

-

.



How Not to Respond to Failures

1. Some engineer contributes to failure or incident
2. Engineer is punished/shamed/blamed/retrained

3. Engineers as a whole become silent on detalls to management to avoid being
scapegoated

4. Management becomes less informed about what actually is happening, do
not actually find/fix root causes of incidents

5. Process repeats, amplifying every time



Blameless Post-Mortems

 What actions did you take at the time??
 What effects did you observe at the time?
 What were the expectations that you had?
 What assumptions did you make?

 What is your understanding of the timeline of events as they occurred?



L essons Learned

What went well

e Monitoring quickly alerted us to high rate (reaching ~100%) of HTTP 500s
e Rapidly distributed updated Shakespeare corpus to all clusters

What went wrong

e We're out of practice in responding to cascading failure

o We exceeded our availability error budget (by several orders of magnitude) due to the exceptional surge of traffic
that essentially all resulted in failures

Where we got lucky'®®

e Mailing list of Shakespeare aficionados had a copy of new sonnet available
e Server logs had stack traces pointing to file descriptor exhaustion as cause for crash

e Query-of-death was resolved by pushing new index containing popular search term


https://sre.google/sre-book/example-postmortem/

Blameless Post-Mortems: Real World Example

Summary of the AWS Service Event in the Northern Virginia (US-EAST-1)
Region

December 10th, 2021

We want to provide you with some additional information about the service disruption that occurred in the Northern Virginia (US-EAST-1) Region on December 7th, 2021.

Issue Summary

To explain this event, we need to share a little about the internals of the AWS network. While the majority of AWS services and all customer applications run within the main AWS
network, AWS makes use of an internal network to host foundational services including monitoring, internal DNS, authorization services, and parts of the EC2 control plane. Because of
the importance of these services in this internal network, we connect this network with multiple geographically isolated networking devices and scale the capacity of this network
significantly to ensure high availability of this network connection. These networking devices provide additional routing and network address translation that allow AWS services to
communicate between the internal network and the main AWS network. At 7:30 AM PST, an automated activity to scale capacity of one of the AWS services hosted in the main AWS
network triggered an unexpected behavior from a large number of clients inside the internal network. This resulted in a large surge of connection activity that overwhelmed the
networking devices between the internal network and the main AWS netwaork, resulting in delays for communication between these networks. These delays increased latency and errors

for services communicating between these networks, resulting in even more connection attempts and retries. This led to persistent congestion and performance issues on the devices

connecting the two networks.

This congestion immediately impacted the availability of real-time monitoring data for our internal operations teams, which impaired their ability to find the source of congestion and
resolve it. Operators instead relied on logs to understand what was happening and initially identified elevated internal DNS errors. Because internal DNS is foundational for all services
and this traffic was believed to be contributing to the congestion, the teams focused on moving the internal DNS traffic away from the congested network paths. At 9:28 AM PST, the
team completed this work and DNS resolution errors fully recovered. This change improved the availability of several impacted services by reducing load on the impacted networking
devices, but did not fully resolve the AWS service impact or eliminate the congestion. Importantly, monitoring data was still not visible to our operations team so they had to continue
resolving the issue with reduced system visibility. Operators continued working on a set of remediation actions to reduce congestion on the internal network including identifying the top
sources of traffic to isolate to dedicated network devices, disabling some heavy network traffic services, and bringing additional networking capacity online. This progressed slowly for
several reasons. First, the impact on internal monitoring limited our ability to understand the problem. Second, our internal deployment systems, which run in our internal network, were
impacted, which further slowed our remediation efforts. Finally, because many AWS services on the main AWS network and AWS customer applications were still operating normally, we
wanted to be extremely deliberate while making changes to avoid impacting functioning workloads. As the operations teams continued applying the remediation actions described
above, congestion significantly improved by 1:34 PM PST, and all network devices fully recovered by 2:22 PM PST.



Conducting Postmortems

* Apply this technique after any event you would like to avoid in the future

* Apply this to technical and non-technical events

» Focus on improvement, resilience, and collaboration: what could any of the
actors have done better?

» Google’s generic postmortem template



https://docs.google.com/document/d/1ob0dfG_gefr_gQ8kbKr0kS4XpaKbc0oVAk4Te9tbDqM/edit

