
© 2023 Jonathan Bell, CC BY-SA

Software Engineering & Security
Advanced Software Engineering
Spring 2023

http://creativecommons.org/licenses/by-sa/4.0/

Security isn't (always) free
In software, as in the real world…

• You just moved to a new house, someone just
moved out of it. What do you do to protect your
belongings/property?

• Do you change the locks?

• Do you buy security cameras?

• Do you hire a security guard?

• Do you even bother locking the door?

Security is about managing risk
Cost of attack vs cost of defense?

• Increasing security might:

• Increase development & maintenance cost

• Increase infrastructure requirements

• Degrade performance

• But, if we are attacked, increasing security might also:

• Decrease financial and intangible losses

• So: How likely do we think we are to be attacked in way X?

Threat Models help analyze these tradeoffs

• What is being defended?

• What resources are important to defend?

• What malicious actors exist and what attacks might they employ?

• What value can an attacker extract from a vulnerability?

• Who do we trust?

• What entities or parts of system can be considered secure and
trusted

• Plan responses to possible attacks

• Prioritize?

A Baseline Security Architecture (1)
Best practices applicable in most situations

• Trust:

• Developers writing our code (at least for the code they touch)

• Server running our code

• Popular dependencies that we use and update

• Don’t trust:

• Code running in browser

• Inputs from users

• Other employees (different employees should have access to different

resources)

A Baseline Security Architecture (2)
Best practices applicable in most situations

• Practice good security practices:

• Encryption (all data in transit, sensitive data at rest)

• Code signing, multi-factor authentication

• Encapsulated zones/layers of security (different people have access to

different resources)

• Log everything! (employee data accesses/modifications) (maybe)

• Bring in security experts early for riskier situations

OWASP Top Security Risks
All 10: https://owasp.org/www-project-top-ten/

• Broken authentication + access control

• Cryptographic failures

• Code injection (various forms - SQL/command line/XSS/XML/deserialization)

• Weakly protected sensitive data

• Using components with known vulnerabilities

https://owasp.org/www-project-top-ten/

Threats discussed in this lesson:

• Threat 1: Code that runs in an untrusted environment

• Threat 2: Inputs that are controlled by an untrusted user

• Threat 3: Bad authentication (of both sender and receiver!)

• Threat 4: Untrusted Inputs

• Threat 5: Software supply chain delivers malicious software

• Recurring theme: No silver bullet

Threat 1: Code that runs in an untrusted environment
Authentication code in a web application

function checkPassword(inputPassword: string){
 if(inputPassword === 'letmein'){
 return true;
 }
 return false;
}

Should this go in our frontend code?

Threat 1: Code that runs in an untrusted environment
Authentication code in a web application

function
checkPassword(inputPassword:
string){
 if(inputPassword === 'letmein'){
 return true;
 }
 return false;
}

Frontend

Backend

Trust boundary
We control this side

Users might be malicious

Fix: Move code to
back end (duh!)

Curses! Foiled
Again!

Threat Category 1: Code that runs in an untrusted environment

Access controls to database

Frontend

Database

We control this side

Users might be malicious

Database password

Trust boundary

Fix: Don’t distribute
sensitive credentials

But, not an easy fix: See
Thursday’s reading

Threat 2: Data controlled by a user flowing into our trusted codebase

https://xkcd.com/327/

https://xkcd.com/327/

Threat 2: Data controlled by a user flowing into our trusted codebase

Cross-site scripting (XSS) vulnerability

Trusted Server
Malicious
JavaScript
Response

Trusted Server

app.get('/transcripts/:id', (req, res) => {
 // req.params to get components of the path
 const {id} = req.params;
 const theTranscript = db.getTranscript(parseInt(id));
 if (theTranscript === undefined) {
 res.status(404).send(`No student with id = ${id}`);
 }
 {
 res.status(200).send(theTranscript);
 }
});

/transcripts/4

Cross-site scripting (XSS) vulnerability

Threat 2: Data controlled by a user flowing into our trusted codebase

Threat 2: Data controlled by a user flowing into our trusted codebase

Cross-site scripting (XSS) vulnerability

Trusted Server
/transcripts/abcd

app.get('/transcripts/:id', (req, res) => {
 // req.params to get components of the path
 const {id} = req.params;
 const theTranscript = db.getTranscript(parseInt(id));
 if (theTranscript === undefined) {
 res.status(404).send(`No student with id = ${id}`);
 }
 {
 res.status(200).send(theTranscript);
 }
});

Threat 2: Data controlled by a user flowing into our trusted codebase

Cross-site scripting (XSS) vulnerability

Trusted Server
/transcripts/%3Ch1%3e…

app.get('/transcripts/:id', (req, res) => {
 // req.params to get components of the path
 const {id} = req.params;
 const theTranscript = db.getTranscript(parseInt(id));
 if (theTranscript === undefined) {
 res.status(404).send(`No student with id = ${id}`);
 }
 {
 res.status(200).send(theTranscript);
 }
});

<h1>Congratulations!</h1>
 You are the 1000th visitor to the
transcript site! You have been selected
to receive a free iPad. To claim your
prize <a href='https://www.youtube.com/
watch?v=DLzxrzFCyOs'>click here!
 <script language=“javascript”>
document.getRootNode().body.innerHTML=
'<h1>Congratulations!</h1>You are the
1000th visitor to the transcript site!
You have been selected to receive a
free iPad. To claim your prize <a
href="https://www.youtube.com/watch?
v=DLzxrzFCyOs">click here!’;
alert('You are a winner!’);
</script>

https://rest-example.covey.town/transcripts/%3Ch1%3ECongratulations!%3C/h1%3E%20You%20are%20the%201000th%20visitor%20to%20the%20transcript%20site!%20You%20have%20been%20selected%20to%20receive%20a%20free%20iPad.%20To%20claim%20your%20prize%20%3Ca%20href='https:/www.youtube.com/watch?v=DLzxrzFCyOs'%3Eclick%20here!%3C/a%3E%3Cscript%20language=%22javascript%22%3Edocument.getRootNode().body.innerHTML='%3Ch1%3ECongratulations!%3C/h1%3EYou%20are%20the%201000th%20visitor%20to%20the%20transcript%20site!%20You%20have%20been%20selected%20to%20receive%20a%20free%20iPad.%20To%20claim%20your%20prize%20%3Ca%20href=%22https://www.youtube.com/watch?v=DLzxrzFCyOs%22%3Eclick%20here!%3C/a%3E';alert('You%20are%20a%20winner!');%3C/script%3E

Threat 2: Data controlled by a user flowing into our trusted codebase

Java code injection vulnerability in Apache Struts (@Equifax)

CVE-2017-5638 Detail
Current Description
The Jakarta Multipart parser in Apache Struts 2 2.3.x before 2.3.32 and 2.5.x before 2.5.10.1 has incorrect exception handling and error-

message generation during file-upload attempts, which allows remote attackers to execute arbitrary commands via a
crafted Content-Type, Content-Disposition, or Content-Length HTTP header, as exploited in the
wild in March 2017 with a Content-Type header containing a #cmd= string.

Threat 2: Data controlled by a user flowing into our trusted codebase

Java code injection vulnerability in Log4J

https://duo.com/decipher/apt41-compromised-six-state-government-networks
https://thehackernews.com/2021/12/extremely-critical-log4j-vulnerability.html

CVE-2021-44228 Detail
Current Description
Apache Log4j2 2.0-beta9 through 2.15.0 (excluding security releases 2.12.2, 2.12.3, and 2.3.1) JNDI features used in configuration, log

messages, and parameters do not protect against attacker controlled LDAP and other JNDI related endpoints. An attacker
who can control log messages or log message parameters can execute arbitrary code
loaded from LDAP servers when message lookup substitution is enabled. From log4j 2.15.0, this
behavior has been disabled by default. From version 2.16.0 (along with 2.12.2, 2.12.3, and 2.3.1), this functionality has been completely
removed. Note that this vulnerability is specific to log4j-core and does not affect log4net, log4cxx, or other Apache Logging Services
projects.
https://nvd.nist.gov/vuln/detail/CVE-2021-44228

https://duo.com/decipher/apt41-compromised-six-state-government-networks
https://thehackernews.com/2021/12/extremely-critical-log4j-vulnerability.html
https://nvd.nist.gov/vuln/detail/CVE-2021-44228

Threat 3: Bad authentication 

client page
(the “user”) server

HTTP Request

HTTP Response

Do I trust that this request really
came from the user?Do I trust that this response

really came from the server?

Threat 3: Bad authentication

client page
(the “user”) server

HTTP Request

HTTP Response

Do I trust that this request really
came from the user?Do I trust that this response

really came from the server?

HTTP Request

HTTP Response

malicious actor
“black hat”, a “man in the middle”

Fix (imperfect): Use
https and SSL

Threat 3: Bad authentication
Preventing the man-in-the-middle with SSL

client page
(the “user”) server

HTTP Request

HTTP Response

amazon.com certificate
(AZ’s public key + CA’s sig)

http://amazon.com

Preventing the man-in-the-middle with SSL

client page
(the “user”) server

HTTP Request

HTTP Response

amazon.com certificate
(AZ’s public key + CA’s sig)

Encrypted request

Encrypted response

Curses! Foiled
Again!

http://amazon.com

SSL: A perfect solution?
Certificate authorities

• A certificate authority (or CA) binds some public key to a real-world entity that
we might be familiar with

• The CA is the clearinghouse that verifies that amazon.com is truly
amazon.com

• CA creates a certificate that binds amazon.com's public key to the CA’s
public key (signing it using the CA’s private key)

http://amazon.com
http://amazon.com
http://amazon.com

Certificate Authorities issue SSL Certificates
Certificate Authority

Amazon

amazon.com
public key

CA private key

amazon.com
private key

CA public key

Some real-world
proof that we are

really
amazon.com

My Laptop

CA private key
amazon.com certificate

(AZ’s public key + CA’s sig)

amazon.com
public key

amazon.com certificate
(AZ’s public key + CA’s sig)

CA public key

http://amazon.com
http://amazon.com
http://amazon.com
http://amazon.com
http://amazon.com

Certificate Authorities are Implicitly Trusted

• Note: We had to already know the CA's public key

• There are a small set of “root” CA’s (think: root DNS servers)

• Every computer/browser is shipped with these root CA public keys

Should Certificate Authorities be Implicitly Trusted?
Signatures only endorse trust if you trust the signer!

• What happens if a CA is compromised,
and issues invalid certificates?

• Not good times.

You can do this for your website for free
letsencrypt.com

Threat 4: Untrusted Inputs
Restrict inputs to only “valid” or “safe” characters

• Special characters like <, >, ‘, “ and `
are often involved in exploits involving
untrusted inputs

Fix: Always use input
validation

Other ways to sanitize your inputs:

• Sanitize inputs – prevent them from being executable

• Avoid use of languages or features that can allow for remote code execution,
such as:

• eval() in JS – executes a string as JS code

• Query languages (e.g. SQL, LDAP, language-specific languages like OGNL
in java)

• Languages that allow code to construct arbitrary pointers or write beyond
a valid array index

Threat 5: Software Supply Chain
Do we trust our own code? Third-party code provides an attack vector

https://eslint.org/blog/2018/07/postmortem-for-malicious-package-publishes
https://www.theverge.com/2021/1/26/22248631/solarwinds-hack-

cybersecurity-us-menn-decoder-podcast

https://eslint.org/blog/2018/07/postmortem-for-malicious-package-publishes
https://www.theverge.com/2021/1/26/22248631/solarwinds-hack-cybersecurity-us-menn-decoder-podcast
https://www.theverge.com/2021/1/26/22248631/solarwinds-hack-cybersecurity-us-menn-decoder-podcast

Threat 5: The software supply chain has many points of weakness

In-house code

External
dependencies

Build process Operating
environment

Distribution
process

(including
updates)

What are Weak Links in the npm Supply Chain?
Discussion: Zahan et al, ICSE 22

• What is a “weak link” signal in a software supply chain?

• An indicator of a potential vulnerability (weakness)

• Some signals are direct vectors (with processes to mitigate) vs part of systemic issues

• Weak link signals:

• Expired maintainer domain - Someone else can buy the domain and take over the email address

• Installation scripts - Presence of installation scripts is troublesome

• Unmaintained packages - Might invite malicious contributors, indicate that vulnerabilities won’t be patched

• Too many maintainers + too many contributors

• Other weak link signals not in this paper but should be considered in future?

• Rapid updates - first update might be a test

What are Weak Links in the npm Supply Chain?
Discussion: Zahan et al, ICSE 22

• Data-driven attack example:

• Scary. Did they actually confirm it was feasible? Have the domains been
secured?

• How “important" are those 899 packages?

• Counter-measure: circle of trust between maintainers

Practical automated detection of malicious npm packages
Discussion: Adriana Sejfia, Max Schäfer at ICSE 22

• Definition: what is a “malicious package on NPM?”

• Any package that performs an operation that compromises security requirements

• Does intention matter?

• Any violation of the NPM terms of service - including “malware” that is things like “OFFICE 2010 TOOLKIT BEST.RAR”

• What is a reasonable baseline for detecting malicious packages?

• Whatever we have been doing already, maybe manually

• What kinds of features might we use to detect malware?

• Obfuscation (why would OSS be obfuscated?)

• Similarity to existing packages (malware or not)

• Typos in the package name (eslint: eslnt aslant)

• What is different about detecting “malicious packages” vs “malicious updates”?

• Additional features to include: Geo location of the author, other anomalies in access. Have access to source code diff. What new behavior
categorized by its use of other APIs/code constructs. Time since last update.

Practical automated detection of malicious npm packages
Discussion: Adriana Sejfia, Max Schäfer at ICSE 22

• What are the tradeoffs to prevent malicious packages on NPM?

• Adding speed bumps to new accounts and new packages [DoS target]

• Claiming that you are trying hard at this sets you up to fail in the court of public opinion when an adversary wins

• Other barriers to entry for newcomers. Potential to delay patches.

• Things cost money, how the heck do these people expect to make money?

• Potential implications for privacy - anything requiring a real-world identity

• What is NPM’s interest in detecting and preventing malicious packages?

• What is GitHub’s interest detecting and preventing malicious packages?

• As of 2020 Microsoft owns NPM :)

• Solving this problem for NPM may help solve problems for other languages too

