
©2023 Jonathan Bell, CC-BY-SA

Design and Modularity
Advanced Software Engineering
Spring 2023

Agenda

• Administrivia

• Welcome to new students joining the class

• Upcoming deadline: Feb 7, reflection paper proposal

• Swapped mining software repositories and open source content

• Quality without a name

• (Some lecture on design)

• Reuse v compression

• (More lecture on design)

Why Design?

• Communicate organization: support human understanding of code

• Control complexity: maintainability, reusability

• Other reasons:

• Efficiency (of implementation)

• Have some artifact to check against requirements

• Developer “happiness” (satisfies developer’s intrinsic motivation)

• Extendability (add more features in future), interoperability (connect this to other things)

• Learnability and understandability

• Testability

• (Note - not all projects will require/be improved by these qualities)

Christopher Alexander

The Quality Without a Name

Image: DALL•E

“The first place I think of when I try to tell someone
about this quality is a corner of an English
country garden where a peach tree grows
against a wall.

The wall runs east to west; the peach tree grows
flat against the southern side. The sun shines on
the tree and, as it warms the bricks behind the
tree, the warm bricks themselves warm the
peaches on the tree. It has a slightly dozy
quality. The tree, carefully tied to grow flat
against the wall; warming the bricks; the
peaches growing in the sun; the wild grass
growing around the roots of the tree, in the angle
where the earth and roots and wall all meet.

This quality is the most fundamental quality there is
in anything.”

• How does RPG describe this? How would you?

• Have you worked with software in a way that resembles this?

• How do we make software in this manner?

• Is it possible to objectively define “good design” in software?

QWAN and Software

A Pattern Language: Towns, Buildings, Construction
Christopher Alexander (1977)

• It is a design language, constructed such that when patterns
are shared by a neighborhood, the result is the QWAN

• Introduced this idea to a wide community beyond architects

"Each pattern describes a problem which occurs over
and over again in our environment, and then
describes the core of the solution to that problem, in
such a way that you can use this solution a million
times over, without ever doing it the same way twice"

Christopher Alexander’s Patterns
No. 82: Office Connections

“If two parts of an office are too far apart, people will not
move between them as often as they need to, and if
they are more than one floor apart, there will be
almost no communication between the two”

“A Pattern Language: Towns, Buildings, Construction,” C Alexander et al. pg 408-409

Example Pattern: Push vs Pull

class Producer {
 theData : number
}

class Consumer {
 neededData: number
 doSomeWork () {
 doSomething(this.neededData)
 }
}

• How can we get a
piece of data from
the producer to
the consumer?

Pattern 1: consumer asks producer ("pull")

class Producer {
 theData : number
 getData () {return this.theData}
}

class Consumer {
 constructor(private src: Producer) { }
 neededData: number
 doSomeWork() {
 this.neededData = this.src.getData()
 doSomething(this.neededData)
 }
}

• The consumer
knows about the
producer
• The producer has

a method that the
consumer can call
• The consumer

asks the producer
for the data

Pattern 2: producer tells consumer ("push")

class Producer {
 constructor(private target : consumer) {}
 theData : number
 updateData (input) {
 // ..something that changes theData..
 // notify the consumer about the change:
 this.target.notify(this.theData)
 }
}

class Consumer {
 neededData: number
 notify(val: number) { this.neededData = val }
 doSomeWork () {
 doSomething(this.neededData)
 }
}

• Producer knows the
identity of the
consumer
• The Consumer has a

method that producer
can use to notify it.
• Producer notifies the

consumer whenever
the data is updated
• Probably there will be

more than one
consumer

This is called the Observer Pattern

• Also called "publish-subscribe pattern"

• Also called "listener pattern"

• The object being observed (the "subject") keeps a list of the objects who
need to be notified when something changes.

• subject = producer = publisher

• When a new object wants to be notified when the subject changes, it registers
with ("subscribes to") with the subject/producer/publisher

• observer = consumer = subscriber = listener

Push vs. Pull: Tradeoffs

PULL PUSH
The Consumer knows about the Producer Producer knows about the Consumer(s)

The Producer must have a method that
the Consumer can call

The Consumer must have a method that
producer can use to notify it

The Consumer asks the Producer for the
data

Producer notifies the Consumer whenever the
data is updated

Better when updates are more frequent
than requests

Better when updates are rarer than requests

Design Patterns are Everywhere
Example: Alexander’s “Oregon Experiment”

Domain-Specific
9. Living Learning Circle:
Students who want to live closely related to the university want their housing integrated with the university; yet most on-campus housing
provided today is zoned off from academic departments. Therefore: Provide housing for 25 per cent of the student population within the 3000
for inner university diameter. Do not zone this housing off from academic departments…”

“The Oregon Experiment,” C Alexander et al. pg 114

Design Patterns are Everywhere

• Every time you read a blog post or web page with some code illustrations,
you are using a design pattern:

• a piece of code to solve a particular problem

• and which needs to be adapted to your particular situation.

• Four guys in the 90’s wrote a book that lists a lot of patterns, including the
“observer” pattern

Christopher Alexander
on OOD Patterns
Keynote address at OOPSLA, 1996

“So far, as a lay person trying to read
some of the works that have been
published by you in this field, it looks to
me more as though mainly the pattern
concept, for you, is an inspiring format
that is a good way of exchanging
fragmentary, atomic, ideas about
programming. Indeed, as I understand
it, that part is working very well. But
these other two dimensions, (1) the
moral capacity to produce a living
structure and (2) the generativity of the
thing, its capability of producing
coherent wholes—I haven't seen very
much evidence of those two things in
software pattern theory. Are these your
shortcomings? Or is it just because I
don't know how to read the literature?”

Talk: https://www.youtube.com/watch?v=98LdFA-_zfA

Transcript: http://www.patternlanguage.com/archive/ieee.html

Image: DALL•E

https://www.youtube.com/watch?v=98LdFA-_zfA
http://www.patternlanguage.com/archive/ieee.html

Show Trial Of The Gang Of Four (A joke?)

https://wiki.c2.com/?ShowTrialOfTheGangOfFour

“Patterns once held out the promise of freeing object-oriented
architects, designers, and programmers from the oppression of
the cartoon/CargoCultists and methodology mongers that
theretofore held sway over them. They aimed to help fulfill the
elusive promise of object-oriented reuse, and help designers
reap the benefits of an undiscovered bounty of collective
object-oriented architectural experience. Have patterns come
close to achieving these utopian goals, or are Vlissides,
Johnson, Helm, and Gamma the GoF that failed?” “The Accused have promoted a cult of personality, and

brought about the establishment of a cottage industry
of consultants, trainers, and sundry acolytes to
interpret their abstruse musings.

The Accused, by distilling hard-won design expertise
into patterns, have encouraged novices to act like
experts.”

https://wiki.c2.com/?ShowTrialOfTheGangOfFour

Example Pattern: Circuit Breaker

• Context: Applications need to connect to remote APIs
to access data. Sometimes there are connection
problems.

• Problem to solve: When there is a connection problem,
making more connections only makes matters worse

• Pattern: Use a “circuit breaker” that, after 3 failures, will
fail-fast

Figure: Martin Fowler

https://martinfowler.com/bliki/CircuitBreaker.html

Example Pattern: Horizontal Scaling

• Context: An application can only process so many
requests per-second. Each request is stateless
(independent from each other).

• Problem to solve: when there are too many requests
for one server to process, we still need to be able to
process them

• Solution: Deploy multiple servers, using a load
balancer to route requests in a round-robin manner

• See also: Stateful load balancing; canary deployments

Load Balancer

Application
Server

Application
Server

Requests

Patterns inspire modularity

• Why modularity?

• Reuse… or… compression?

• How to define module boundaries?

• Experience… or… Patterns?

• Common problems + common solutions =
infrastructure?

• Database, load balancer, cache, logger,
authentication/authorization, message queues,
etc…

Load
Balancer

Application
Server

Application
Server

Requests

Compression and Reuse

• In what ways can we reuse code?

• Object-oriented

• Modules

• Libraries

• …?

• Why compare reuse and compression?

• How to design abstractions? What are the desirable qualities for abstractions?

Distributed Software Architectural Patterns

• Goal: abstract details away into reusable components

• Enables exploration of design alternatives

• Allows for analysis of high-level design before implementation

• Match system requirements to quality attributes of common architectural
patterns

The Monolith Relies on a Single Server

• Simplest answer to consistency problem: have only one server, one source of
truth

• Still “distributed” in that we have many clients

• Sacrifices:

• Scalability

• Performance

• Fault tolerance

Server

Client Client Client Client Client

Stack Exchange is a Monolithic Application
(Stack Overflow, etc)

https://stackexchange.com/performance [2022]  
https://hanselminutes.com/847/engineering-stack-overflow-with-roberta-arcoverde

.Net/C#
Application

Server

HAProxy
(Load

Balancer)

MS
SQLServer

(DB)

9 identical application
instances, each running on

1 server

.Net/C#
Application

Server

.Net/C#
Application

Server

.Net/C#
Application

Server

.Net/C#
Application

Server

.Net/C#
Application

Server

.Net/C#
Application

Server

.Net/C#
Application

Server

.Net/C#
Application

Server(External Component) (External Component)

https://stackexchange.com/performance
https://hanselminutes.com/847/engineering-stack-overflow-with-roberta-arcoverde

Tiered Architectures Partition Responsibility

• Key idea: Partition the system into
distinct tiers based on responsibilities

• Each tier scales independently of the
others - .com need not know about .org

• Satisfying a single request may require
multiple tiers

• DNS is a tiered architecture

• Example: scale .com differently
from .gov

Stack Overflow is Really a Tiered Monolith

.Net/C#
Application

Server
Load

Balancer

9 Identical application
instances, each running on
1 server (64GB RAM each)

.Net/C#
Application

Server

.Net/C#
Application

Server

.Net/C#
Application

Server

.Net/C#
Application

Server

.Net/C#
Application

Server

.Net/C#
Application

Server

.Net/C#
Application

Server

ElasticSearch

SQL Server:
Everything

Else

SQL Server:
Stack

Overflow

SQL Server:
Everything Else
(hot standby)

SQL Server:
Stack Overflow
(hot standby)

Load
Balancer
(HAProxy)

ElasticSearchElasticSearch
Server

2 off-the-shelf load
balancers

3 off-the-shelf search index
servers

ElasticSearchTag Engine
Server

2 custom-built question
indices

ElasticSearchRedis Server

2 off-the-shelf Redis in-
memory caches (main/

replica)https://stackexchange.com/performance [2022]  
https://hanselminutes.com/847/engineering-stack-overflow-with-roberta-arcoverde

.Net/C#
Application

Server

https://stackexchange.com/performance
https://hanselminutes.com/847/engineering-stack-overflow-with-roberta-arcoverde

Microservice Architectures
(Or: service-oriented architectures)

• Organize implementation around components (responsibilities)

• Each component is implemented independently

• Each component is

• independently replaceable,

• independently updatable

• Components can be built as libraries, but more usually as web services

• Services communicate via well-defined protocol like REST

Microservices: Schematic Example

Productivity
App

Frontend

“Dumb”
App Server

Mod 1

REST service

Database

Mod 2

REST service

Database

Mod 3

REST service

Database

Mod 4

REST service

Database

Mod 5

REST service

Database

Mod 6

REST service

Database

REST

Todos
NodeJS, MongoDB

Mailer
Java, MySQL

Logins
Google Service

Search Engine

Java, Neo4J

Analytics

C#, SQLServer

Social Crawler

Python, MongoDB

Different languages,
different operating
systems

• Advantages

• services may scale differently, so can be implemented on hardware

appropriate for each (how much cpu, memory, disk, etc?). Ditto for
software (OS, implementation language, etc.)

• services are independent (yay for interfaces!) so can be developed and
deployed independently

• Disadvantages

• service discovery?

• should services have some organization, or are they all equals?

• overall system complexity… developer environments/experience?

Microservice Advantages and Disadvantages

Microservices and Twitter

https://www.theverge.com/2022/11/15/23460940/twitter-2fa-two-factor-authentication-microservices https://twitter.com/elonmusk/status/1592177471654604800

https://www.theverge.com/2022/11/15/23460940/twitter-2fa-two-factor-authentication-microservices
https://twitter.com/elonmusk/status/1592177471654604800

• Microservices at Netflix:

• 100s of microservices

• 1000s of daily production changes

• 10,000s of instances

• BUT:

• only 10s of operations engineers

Microservices are (a) highly scalable and (b) trendy

https://medium.com/refraction-tech-everything/how-netflix-works-the-hugely-simplified-complex-stuff-that-happens-
every-time-you-hit-play-3a40c9be254b

https://medium.com/refraction-tech-everything/how-netflix-works-the-hugely-simplified-complex-stuff-that-happens-every-time-you-hit-play-3a40c9be254b
https://medium.com/refraction-tech-everything/how-netflix-works-the-hugely-simplified-complex-stuff-that-happens-every-time-you-hit-play-3a40c9be254b

Microservices vs Monoliths
Martin Fowler’s Microservices Guide - https://martinfowler.com/microservices/

higher is better

https://martinfowler.com/microservices/

