
© 2023 Jonathan Bell, CC BY-SA

Metrics & Mining Software 
Repositories
Advanced Software Engineering 
Spring 2023  

http://creativecommons.org/licenses/by-sa/4.0/


Agenda

Today: Lecture - Metrics and mining software repositories (case studies)

   Why should we measure metrics, and mine software repositories for 
them? 
   What metrics can we measure?

   How can we trust conclusions from these metrics?

Thursday: Discussion - Methodology for MSR and a study of jupyter 
notebooks



Why Measure Stuff in SE?

• Do we fund a project?


• Are we done testing?


• Is our code fast enough, or secure enough?


• Is our code maintainable?


• What features should we focus on improving?


• Who do we give a bonus to? 



 

Big Question: How do we measure?

https://codingsans.com/blog/team-productivity-improve-developers-productivity
https://intuitusadvisory.com/insights/7-killers-of-software-development-productivity-and-how-they-impact-value


Empirical Software Engineering Research

• Conduct research to clearly 
understand state of the art


• Develop new interventions (tools, 
processes, etc)


• Evaluate interventions in context


• Utilize diverse empirical methods


• Surveys, user studies, analyze 
existing artifacts

Research Practice

Informs

Informs



Brainstorm: What kinds of metrics can we collect from teams/codebases?

(Bullets are notes from class discussion)

• Frequency of commits - how active


• Content of commit messages (specific words... swears)


• LoC - per-file, per-language, etc


• Presence of bugs (reported by users, fixed by developers)


• Overall code quality (linters)


• Test coverage - broadly, test results (could include performance and other indicators)


• Specific kinds of changes (change API, change version)


• Error handling (review code and determine how well handled they are)


• Collaboration - who wrote how many LoC, who improved others’ code (who introduced most bugs?)


• Number of revisions included in a single code review/pull request/change list


• Readability (expert review, or semi-automated?)


• Security (presence of known vulnerabilities)


• NON-code artifacts: instructions (README, datasets, other artifacts)


• Number of dependencies


• Downstream dependencies: how much this package is used



Brainstorm: What are the risks to collecting and using metrics?
(Bullets are notes from class discussion)

• Frequency of commits - how active


• Content of commit messages (specific words... swears)


• LoC - per-file, per-language, etc


• Presence of bugs (reported by users, fixed by developers)


• Overall code quality (linters)


• Test coverage - broadly, test results (could include performance and other indicators)


• Specific kinds of changes (change API, change version)


• Error handling (review code and determine how well handled they are)


• Collaboration - who wrote how many LoC, who improved others’ code (who introduced 
most bugs?)


• Number of revisions included in a single code review/pull request/change list


• Readability (expert review, or semi-automated?)


• Security (presence of known vulnerabilities)


• NON-code artifacts: instructions (README, datasets, other artifacts)


• Number of dependencies


• Downstream dependencies: how much this package is used

• General: these metrics are likely proxies for the 
actual goal you are trying to measure


• Co-occurrence, co-variance of metrics


• Might have set the wrong goal


• Metrics might be the wrong or could be 
computed wrong (leading to downstream 
problems)


• Risk of putting too much pressure on 
developers and having an unexpected 
influence on the overall system (see also 
goodhart’s law)



What metrics can you mine?

• Version control: commits (who, what, when, why?)


• Bug tracker: issues (maybe introducing commit, fixing commit)


• Static code analysis (e.g. LoC, cyclomatic complexity, presence of APIs, type 
definitions, etc)


• Continuous integration log analysis (passing/failing tests, etc)


• Dynamic code analysis (e.g. build it and run tests)


• Survey feedback



We have seen two MSR-style projects already



Case Studies - Motivations and Metrics

• An academic question: Can we help developers write code that has less 
defects?


• By structuring their code differently?


• By focusing their testing efforts?


• By choosing languages or frameworks?


• A practical question: Can we make developers more productive?


• By changing a code review process?



Software Metric: McCabe Cyclomatic Complexity
Rationale: If we can measure complexity, then we can detect and avoid it

public static char[] percentDecode(char[] input) {
  char[] result = new char[input.length - 2 * count(input, '%')];
  int size = 0;
  for(int i = 0; i < input.length; i++) {
    if(input[i] == '%') {
      result[size++] = hexToChar(input[i + 1], input[i + 2]);
      i += 2;
    } else {
      result[size++] = input[i];
    }
  }
  return result;
}

Input: “Hello%20World”

Output: “Hello World”



Software Metric: McCabe Cyclomatic Complexity
Is this code complex to understand?

M = E - N + 2P
M = 10 - 9 + 2•1
M = 3
Is this good?



Software Metric: McCabe Cyclomatic Complexity
Risk: Correlation != Causation



Risk: McNamara Fallacy

• Measure whatever can be easily measured


• Disregard that which cannot be measured easily


• Presume that which cannot be measured easily 
is not important


• Presume that which cannot be measured easily 
does not exist



Categorizing Methodological Risks: Threats to Validity

• Construct validity: Are we measuring the right thing? Does the treatment 
actually correspond to the cause/effect that we are observing?


• Internal validity: Are there other factors in our experiment that might have also 
had an impact on the effect?


• External validity: Do these results generalize to other contexts and 
environments?



Avoiding Defects: Another Take
Simple Testing Can Prevent Most Critical Failures: An Analysis of Production Failures in Distributed Data-Intensive Systems 
(Yuan et al, OSDI 2014)

• Research question: Where are bugs in distributed systems?


• Methodology: randomly sample 198 real world failures from HDFS, Hadoop, 
Base, Cassandra, Redis


• Only select priority “Blocker”, “Critical” or “Major” in the past 4 years, 
rejecting issues where reporter and assignee are the same


• Manually investigate every single error: failure report, discussion, error logs, 
source code, patches


• MUCH more effort than just measuring statistics

https://www.usenix.org/system/files/conference/osdi14/osdi14-paper-yuan.pdf

https://www.usenix.org/system/files/conference/osdi14/osdi14-paper-yuan.pdf


Studying the reproducibility of these failures
Simple Testing Can Prevent Most Critical Failures: An Analysis of Production Failures in Distributed Data-Intensive Systems 
(Yuan et al, OSDI 2014)

https://www.usenix.org/system/files/conference/osdi14/osdi14-paper-yuan.pdf

Are failures deterministic?How many inputs are needed to reproduce the failures?

https://www.usenix.org/system/files/conference/osdi14/osdi14-paper-yuan.pdf


Studying the cascading nature of these failures
Simple Testing Can Prevent Most Critical Failures: An Analysis of Production Failures in Distributed Data-Intensive Systems 
(Yuan et al, OSDI 2014)

https://www.usenix.org/system/files/conference/osdi14/osdi14-paper-yuan.pdf

https://www.usenix.org/system/files/conference/osdi14/osdi14-paper-yuan.pdf


Taking Action: Detecting bad error handlers
Simple Testing Can Prevent Most Critical Failures: An Analysis of Production Failures in Distributed Data-Intensive Systems 
(Yuan et al, OSDI 2014)

• Criteria:

• Catch block is empty or just 

contains a print

• Catch block contains TODO or fix

• Catch block for “Exception” or 

“Throwable” that calls System.exit()

• Actionable/useful?

https://www.usenix.org/system/files/conference/osdi14/osdi14-paper-yuan.pdf

https://www.usenix.org/system/files/conference/osdi14/osdi14-paper-yuan.pdf


Studying Defect Density
“A Large Scale Study of Programming Languages and Code Quality in Github” (Ray et al FSE 14)

• Research question: What is the effect of programming languages on software 
quality?


• Methodology: Download 729 projects written in 17 language, look for correlations in 
languages/defects


• Categorize languages by hand as “functional”, “strongly typed”, etc


• Identify bug-fixing commits (includes keyword ‘error’, ‘bug’, ‘fix’, ‘issue’, ‘mistake’, 
‘incorrect’, ‘fault’, ‘detect’, and ‘flaw’)


• Build a classifier to label bugs as performance, security, etc.


• Examine correlations between languages, language properties, bugs, bug classes



Studying Defect Density
“A Large Scale Study of Programming Languages and Code Quality in Github” (Ray et al FSE 14)

Are functional languages less buggy than others? Are some defect categories more common per-language?



Threats to Validity
As stated in Section 5 of “A Large Scale Study of Programming Languages and Code Quality in Github” (Ray et al FSE 14)

• Why not use a bug database? “We wanted to capture the issues that 
developers continuously face in an ongoing development process, not just the 
reported bugs”


• Labeling projects by domain might be biased, but another author double-
checked


• Categorization might be biased, but hand-sampled 180 random fixes and 
found overall precision 84%, recall 84%


• Categorizing languages (e.g. “functional”, “procedural”) could be subjective


• Outside factors might impact the incidence of bugs-per-language



Brainstorm: Threats to Validity
“A Large Scale Study of Programming Languages and Code Quality in Github” (Ray et al FSE 14)

• Research question: What is the effect of programming languages on software 
quality?


• Methodology: Download 729 projects written in 17 language, look for correlations in 
languages/defects


• Categorize languages by hand as “functional”, “strongly typed”, etc


• Identify bug-fixing commits (includes keyword ‘error’, ‘bug’, ‘fix’, ‘issue’, ‘mistake’, 
‘incorrect’, ‘fault’, ‘detect’, and ‘flaw’)


• Build a classifier to label bugs as performance, security, etc.


• Examine correlations between languages, language properties, bugs, bug classes



There were more threats to 
validity.
• Bug categories are inconsistently labeled


• Not all commits were included, some were 
duplicates


• Detecting “fix” commits is very inaccurate


• Other potential threats: project age, bug rate, 
developers; only consider open source software


• Most important: is this even a question we 
should try to answer?



How to determine what to study?
Consider these questions from the experts at Google’s SE productivity team

• What result are you expecting to find, and why?


• If the data supports the expected result, what action will be taken?


• If the data supports a negative result, will appropriate action be taken?


• Who is going to decide to take action on the result, and when would they do 
it?

[Software Engineering @ Google Ch 7, C. Jaspan]

https://learning.oreilly.com/library/view/software-engineering-at/9781492082781/ch07.html#measuring_engineering_productivity


Measuring and Improving Engineering Productivity
Example: Code Review Processes

“Modern Code Review: A Case Study at Google”, Sadowski et al, ICSE 2018 

You need to have 100’s of successful 
changes integrated before you can be a 

readability reviewer
Is this hazing?

Do linters replace this?



How do we measure process efficiency?
Goal/Signal/Metric framework

• Goal: desired end result


• Signal: How we’re likely to know if we’ve achieved the end result, may not be 
measurable


• Metric: A proxy for a signal, which can actually be measured

[Software Engineering @ Google Ch 7, C. Jaspan]

https://learning.oreilly.com/library/view/software-engineering-at/9781492082781/ch07.html#measuring_engineering_productivity


Engineering Productivity: A Broad Goal
QUANTS components

• Quality of the code (Is it tested? Is it maintainable?)


• Attention from engineers (Does the process distract engineers?)


• Intellectual complexity (How does the complexity of the process relate to the 
complexity of the task?)


• Tempo and velocity (How quickly can engineers accomplish their tasks?)


• Satisfaction (How happy are engineers?)

[Software Engineering @ Google Ch 7, C. Jaspan]

https://learning.oreilly.com/library/view/software-engineering-at/9781492082781/ch07.html#measuring_engineering_productivity


From Quality Goals to Metrics
McCall Quality Model

“A Framework for the Measurement of Software Quality”, Cavano & McCall

https://dl.acm.org/doi/10.1145/800283.811113


From Quality Goals to Metrics
McCall Quality Model

Maintainability

Correctability

Testability

Expandability

Faults count

Degree of testing

Effort

Change counts

Closure time

Isolate/fix time

Fault rate


Statement coverage

Test plan completeness


Resource prediction

Effort expenditure


Change effort

Change size

Change rate



From Goals to Signals and Metrics
Readability Review

• Goal: “Engineers are more productive as a result of the readability process.” [Partial list]


• Signal: “Engineers who have been granted readability judge themselves to be more productive than 
engineers who have not been granted readability.”


• Metric: “Quarterly Survey: Proportion of engineers reporting that they’re highly productive”


• Signal: “Changelists (CLs) written by engineers who have been granted readability are faster to review 
than CLs written by engineers who have not been granted readability.”


• Metric: “Logs data: Median review time for CLs from authors with readability and without readability”


• Signal: “CLs written by engineers who have been granted readability are easier to shepherd through 
code review than CLs written by engineers who have not been granted readability.”


• Metric: “Logs data: Median shepherding time for CLs from authors with readability and without 
readability”

[Software Engineering @ Google Ch 7, C. Jaspan]

https://learning.oreilly.com/library/view/software-engineering-at/9781492082781/ch07.html#measuring_engineering_productivity


From Goals to Signals and Metrics
Readability Review

• Goal: “Engineers write higher-quality code as a result of the readability process.”


• Signal: “Engineers who have been granted readability judge their code to be of higher 
quality than engineers who have not been granted readability.”


• Metric: “Quarterly Survey: Proportion of engineers who report being satisfied with the 
quality of their own code”


• Signal: “The readability process has a positive impact on code quality.”


• Metric: “Readability Survey: Proportion of engineers reporting that readability reviews 
have no impact or negative impact on code quality”


• Metric: “Readability Survey: Proportion of engineers reporting that participating in the 
readability process has improved code quality for their team”

[Software Engineering @ Google Ch 7, C. Jaspan]

https://learning.oreilly.com/library/view/software-engineering-at/9781492082781/ch07.html#measuring_engineering_productivity


Readability Review: The Conclusion

• Engineers who had readability:


• Felt satisfied


• Felt that they learned from the process


• Had their code reviewed faster


• Survey data identified pain points in the process that were folded into the 
process


• Readability continues.

[Software Engineering @ Google Ch 7, C. Jaspan]

https://learning.oreilly.com/library/view/software-engineering-at/9781492082781/ch07.html#measuring_engineering_productivity


Code Review on GitHub
“First Come First Served: The Impact of File Position on Code Review” (Fregnan et al ESEC/FSE 2022)

• Research question: “Does the order in which a file is shown in a review bias the 
outcome of the review process?


• Methodology:


• Study 138 open source projects  
on GitHub to identify correlation 
between order and number of  
comments


• Controlled experiment, participants 
review code with seeded defects, 
vary the ordering



Code Review on GitHub
“First Come First Served: The Impact of File Position on Code Review” (Fregnan et al ESEC/FSE 2022)

Does file position influence number of comments? Does file position influence number of comments? Does file position influence review time?



On Productivity Incentives 
Goodhart’s Law: When a measure becomes a target, it ceases to be a good measure

Dilbert © 2021, Andrews McMeel Syndication

https://dilbert.com/strip/1995-11-13


Productivity Metrics
Intrinsic & Extrinsic Motivations

Extrinsic rewards:

Can extinguish intrinsic motivation

Can diminish performance

Can crush creativity

Can crowd out good behavior

Can encourage cheating, shortcuts, and 

unethical behavior

Can become addictive

Can foster short-term thinking

Focus on encouraging:

Autonomy

Mastery

Purpose



A closing word on productivity
“On the cruelty of really teaching computing science”

From there it is only a small step to measuring ‘programmer 
productivity’ in terms of ‘number of lines of code produced 
per month.’ This is a very costly measuring unit because it 
encourages the writing of insipid code, but today I am less 
interested in how foolish a unit it is from even a pure 
business point of view. My point today is that, if we wish to 
count lines of code, we should not regard them as ‘lines 
produced’ but as ‘lines spent’: the current conventional 
wisdom is so foolish as to book that count on the wrong side 
of the ledger.
- Edsger W. Dijkstra

https://www.cs.utexas.edu/users/EWD/transcriptions/EWD10xx/EWD1036.html

