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Agenda

Today: Lecture - Metrics and mining software repositories (case studies)

Why should we measure metrics, and mine software repositories for
them?
What metrics can we measure”?

How can we trust conclusions from these metrics?

Thursday: Discussion - Methodology for MSR and a study of jupyter
notebooks



Why Measure Stuff in SE?

Do we fund a project?

* Are we done testing?

* |s our code fast enough, or secure enough?

* |s our code maintainable?

 What features should we focus on improving?

 Who do we give a bonus to?
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Empirical Software Engineering Research

» Conduct research to clearly
understand state of the art

» Develop new interventions (tools,
processes, etc)

« Evaluate interventions in context
» Utilize diverse empirical methods

» Surveys, user studies, analyze
existing artifacts

Informs
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Research Practice

N4

Informs



Brainstorm: What kinds of metrics can we collect from teams/codebases?

(Bullets are notes from class discussion)

* Frequency of commits - how active
- Content of commit messages (specific words... swears)
- LoC - per-file, per-language, etc
* Presence of bugs (reported by users, fixed by developers)
 Overall code quality (linters)
- Test coverage - broadly, test results (could include performance and other indicators)
« Specific kinds of changes (change API, change version)
 Error handling (review code and determine how well handled they are)
 Collaboration - who wrote how many LoC, who improved others’ code (who introduced most bugs?)
* Number of revisions included in a single code review/pull request/change list
- Readability (expert review, or semi-automated?)
 Security (presence of known vulnerabilities)
- NON-code artifacts: instructions (README, datasets, other artifacts)
« Number of dependencies

- Downstream dependencies: how much this package is used



Brainstorm: What are the risks to collecting and using metrics?

(Bullets are notes from class discussion)

* Frequency of commits - how active
- Content of commit messages (specific words... swears)
- LoC - per-file, per-language, etc
* Presence of bugs (reported by users, fixed by developers)
 Overall code quality (linters)
- Test coverage - broadly, test results (could include performance and other indicators)
« Specific kinds of changes (change API, change version)
 Error handling (review code and determine how well handled they are)

« Collaboration - who wrote how many LoC, who improved others’ code (who introduced
most bugs?)

* Number of revisions included in a single code review/pull request/change list
- Readability (expert review, or semi-automated?)

 Security (presence of known vulnerabilities)

- NON-code artifacts: instructions (README, datasets, other artifacts)

* Number of dependencies

- Downstream dependencies: how much this package is used

General: these metrics are likely proxies for the
actual goal you are trying to measure

Co-occurrence, co-variance of metrics
Might have set the wrong goal

Metrics might be the wrong or could be
computed wrong (leading to downstream
problems)

Risk of putting too much pressure on
developers and having an unexpected
influence on the overall system (see also
goodhart’s law)



What metrics can you mine?

* \ersion control: commits (who, what, when, why?)
 Bug tracker: issues (maybe introducing commit, fixing commit)

o Static code analysis (e.g. LoC, cyclomatic complexity, presence of APIs, type
definitions, etc)

* Continuous integration log analysis (passing/failing tests, etc)
 Dynamic code analysis (e.g. build it and run tests)

e Survey feedback



We have seen two MSR-style projects already

2020 TEEF/ACM 42nd Internationzl Conference on Software Enginearing (ICSE)

How Has Forking Changed in the Last 20 Years?
A Study of Hard Forks on GitHub

Shurui Zhou

Carncgic Mcllon University, USA

ABSTRACT
The notion of forking has changed with the rise of distributed ver-

sion comtrol systems and sacial coding environments, like GirTToe
Tradilionally fodang refers Lo spliting off an mdependent devel
opment branch (which we call hard forks); research on hard forks,
conducted mostly in pre-GitTToh davs showed that hard forks were
aften seen critical as they may frazment a comrnity. Taday, in so-
cial coding environments, open souzee developers are envouraged
to fork a project in order to contribute to the community (which
we call social forks), which may have also influenced perceptions
and praclives azound hard forks. To revisil hard fors. we dentily.
studv, and classify 15,306 hard forks on GitHub and interview 18
owners of hard forks or forked repositories. We find that, among
athers, hard forks often evolve ant of sacial farks rather than heing
planned deliberately and thal perceplon uboul hard forks have
indeed chanped dramatically, seeing them often as a positive non-
competitive alternative to the orizinal project.

ACM Reference Format:

Shurw Zhoen, Bogdan Visescu, and Chostie Kasloaer, 20020, How Has
Torking Changed in the Last 20 Years? A 5Study of Ilard Forks on Gitl Iub
In #2nd international Conference on Software Engineering (ICSE 29). May
2949, 2060, Seenl. Reprabilic of Kowvw ACM, New York, NY, TISA, 732 pages
https:/doi.org/10.1125/3377811.3330412
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Bogdan Vasilescu
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Christian Késtner
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Figure 1: Timeline of some popular open-source forking events;
popularity approximated with Google Trends.

[ozks in the tredilone] sense. As in vur prier work [53]. we dislin
suish between social forks, referring to creating a public copy ofa
repasitory on a social cading site like GatlHTue, often with the goal
of contribuling lo the oniginal projecl, und hard forks, relernng

to the traditional nction of splitting off 2 new development branch.

HMard forks have been discussed controversially throughont the
histary of free and apen-saurce softecare. On the ane hand. free and
open source licenses codified the nght o creale hard forkes, which
was seen as essential for guaranteeing flexibility and fostering
disruptive inncvations |15, 30, 32| ancd useful for encouraging a
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2020 TEEE/ACM 42nd International Conference on Software Engineering (ICSE)

How to Not Get Rich:
An Empirical Study of Donations in Open $ource

Cassandra ()vcrncyT Jens Mcinicke.# Christian Kastner,* Bogdan Vasilescu#
“Olin College, USA *Carncgic Mellon University, USA

ABSTRACT

Open source 15 ubiguilous end many projects ucl us eribwal in

frastructure, yer funding and sustaining the whale ecosvsatem is
challenging. While there are many different fimding models for
pen spuree arul coneerted elforls Ill.'uugh foundatians, donation

platforms like PavPai, Parreon, and OpenCollective are popular and
low-har platfarms to raise funds for open-sauree development With

a mixed-method study, we investigate the emerzing and larpely
unexplored phenomenon of denations in open source. Specifically,
we quantify how conuncnly open-source projects ask for donations,
statistically model characteristics of projects that ask for and re-
ceive donatians, analyze for what the requested fimds are needed

and usec, and assess whether the received denations achieve the

intended cutcomes. We find 25,383 projects asking for donations on
Grrllue, often to support engineering activities; however, we also

find nc clear evidence that donations intluence the activity level
orf a project. In fact, we find that donations are used in a multitude

oI ways, raising new research questions about efiective funding.

ACM Reference furmal:

Cassandra Overncy, Tens Meinicke, Christian Kistnor. Bogdan Vasilescu.
2020, How Lo NulGel Rich: A Exapcwcel Study of Depalaone u: Open Svurce,
In Freceedings ot 42nd International Conjerence on Sctivaare Engineering. Seoul,
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Figure 1: Adoption of donation platforms over time on
GrrHup (number of new non-fork reposilories per month).

relevant, With increasing popularity, demands for maintenance and
support work typicallv rise, inclucing larse numbers of suppert
requests, feature requests, and reported issues. When open-scurce
infrastructurc is insufficientlv maintained or ¢ven abandoned by
their developers. this can raise significant costs and risks for users
of such infrastructure, who might need te work around known bugs
or muke significan! chunges o (ind ullernabives. How W supply wll
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Case Studies - Motivations and Metrics

 An academic question: Can we help developers write code that has less
defects?

* By structuring their code differently?
» By focusing their testing efforts?
* By choosing languages or frameworks?
* A practical question: Can we make developers more productive”?

By changing a code review process?



Software Metric: McCabe Cyclomatic Complexity

Rationale: If we can measure complexity, then we can detect and avoid it

public static char[] percentDecode(char[] input) {
char[] result = new char[input.length - 2 * count(input, '%')];
int size = 0;

for(int 1 = 0; 1 < input.length; i++) {
if(input[i] == '%") {
result[size++] = hexToChar(input[i + 1], input[i + 2]);
1 += 2;
} else {
result[size++] = input[i];
}
}
return result;
}

Input: “Hello%20Wor Ld”
Output: “Hello World”



Software Metric: McCabe Cyclomatic Complexity

Is this code complex to understand?

o
M=E-N+ 2P
M =10 — 9 + 21
M =3

Is this good??



Software Metric: McCabe Cyclomatic Complexity

Risk: Correlation != Causation

A critique of cyclomatic
complexity as a software
metric

by Martin Shepperd

McCabe’s cyclomatic complexity metric is 1 Intreduction

Table 1 Empirical validations of cyclomatic complexity

2016 IEEE Intcrmational Conference on Software Quality, Rechability and Sceurity

Thresholds for Size and Complexity Metrics: A
Case Study from the Perspective of Defect Density

Kazuhiro Yamashita*, Changyun Huang*, Mciyvappan Nagappan', Yasutaka Kamci®,
Audris Mockus®, Ahmed E. Hassan', and Naoyasu Ubayashi*
* Kyushu University, Japan; |{vamashita, huang } @ poslait kyushu v.ac.jp, [xamei, ubayashi | @ait kyushu v.ac.jp
t Queen’s University, Canada; ahmed@cs.queensu ca
t Rochester Institute of Technology, USA: meai@se.rit edu
University of Tennessee-Knoxville, USA; audris@utx.cdu
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Feuer (Ref. 44) r=090""* and module interface coupling) using a very large set of open it rinciple 'suglges § that extreme va uias or a
Gaffney (Ref. 45) r=060 and closed source projects written primarily in Java. We relate ~ metric are a sign of poor guality code [17, 18]. Ferton and
Henry (Ref. 46) rr=084""" r2=092**** the threshold-derived risk to (a) the probability that a file would Ncil provide a morc comprchensive list of rescarch studics
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Schneiderman (Ref. 49)  r2=061""" r=032""""" particularly pronounced when using size thresholds. Surprisingly, he relationship between software defects and software metrics
Shen (Ref. 50) r=078""" the defect density was uniformly lower in the very high-risk hike size and complexity, It g, thus, unclear if metric thresholds
Sheppard (Ref. 51) r2=0.79 re=0.38 r=035 group of files. Our resnlis snggest that, ss expected, less code s should be used o identily source code files that ane al high
' 1ated with Fewer defects. However, the same amount of code i3k
Sunohara (Ref. 52) r2=04,0.38 r=0.720.7 ass0Cia ver, the risk.
in large and complex files was associated with fewer defects than ~a ] . ; ; ¢
Wang (Re" 53) ré=062 rt=059 when located in smaller and less complex files. Hence we conclude b Lcr,scqucnl: 4 hwc a;:n‘.";o Ob;em fa cons:s.;em. rwlal f,:uhfp
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r was ‘improved’ when modified for potentially ‘aberrant’ results
correlated with N (i.e. Halstead's token count)
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Index Terms—SoNware mwtrics; Thresholds; Defect models;

I. INTRODUCTION

Thera has heen a considerable amount of research in the
ficld of softwarc dcfect prediction, cspecially in the last
decade. Over 100 papers have been published just from 2000
- 2011 in this area of Empirical Software Engineering (ESE)
rescarch alerc [16, 27]. The primary goal of such rcscarch s
to be able to provide guidelines to practitioners on waat kind

a file, and Module interface size in a file), and complexity
based (cyclomatic complexity and module inwaré coupling).
We evaluate software qualily using (wo crileria - () delect
proneness (probability of @ file having a defect), and (b) defect
density (the number of defecis/LOC).

We replicate the most recently published state-of-the-art
technique (proposed by Alves et al. [3]) to determine the
thresholds for these metrics, and found them o be very close
to ones reported carlier, In order 10 use this approach, we
need a set of projects to calculate the thresholds from. In



Risk: McNamara Fallacy

 Measure whatever can be easily measured
* Disregard that which cannot be measured easily

 Presume that which cannot be measured easily
IS not Important

 Presume that which cannot be measured easily
does not exist




Categorizing Methodological Risks: Threats to Validity

* Construct validity: Are we measuring the right thing? Does the treatment
actually correspond to the cause/effect that we are observing?

* |nternal validity: Are there other factors in our experiment that might have also
had an impact on the effect?

o External validity: Do these results generalize to other contexts and
environments?



Avoiding Defects: Another Take

Simple Testing Can Prevent Most Critical Failures: An Analysis of Production Failures in Distributed Data-Intensive Systems
(Yuan et al, OSDI 2014)

 Research question: Where are bugs in distributed systems?

 Methodology: randomly sample 198 real world failures from HDFS, Hadoop,
Base, Cassandra, Redis

* Only select priority “Blocker”, “Critical” or “Major” in the past 4 years,
rejecting issues where reporter and assignee are the same

 Manually investigate every single error: failure report, discussion, error logs,
source code, patches

« MUCH more effort than just measuring statistics

https://www.usenix.org/system/files/conference/osdi14/osdil14-paper-yuan.pdf



https://www.usenix.org/system/files/conference/osdi14/osdi14-paper-yuan.pdf

Studying the reproducibility of these failures

Simple Testing Can Prevent Most Critical Failures: An Analysis of Production Failures in Distributed Data-Intensive Systems
(Yuan et al, OSDI 2014)

How many inputs are needed to reproduce the failures? Are failures deterministic?
Num. of events %o
1 23%  }single event Software num. of deterministic failures
o) 50% ) Cassandra 76% (31/41)
3 17% HBase 71% (29/41)
4 59 » multiple events: 77% HDFS 76% (31/41)
>4 5% MapReduce 63% (24/38)
’ Redis 79% (30/38)
Table 3: Minimum number of input events required to trigger Total 14% (147/198)
the failures. Table 6: Number of failures that are deterministic.
Input. ovent vype e Source of non-determinism number
SFartmg aservice . 8% Timing btw. input event & internal exe. event 27 (53%)
File/database write from client 32% Multi-thread atomicity violation 13 (25%)
Unreachable node (network error, crash, etc.) 24% Multi-thread deadlock 3 (6%)
Configuration change 23% Multi-thread lock contention (performance) 4 (8%)
Adding a node to the running system 15% Other 4 (8%)
File/database Tead f.rom client 13% Total 51 (100%)
Node restart (intentional) 9%
Data corruption 3% Table 7: Break-down of the non-deterministic failures. The
Other 4% “other” category is caused by nondeterministic behaviors from
Table 4: Input events that led to failures. The % column re- the OS and third party libraries.

ports the percentage of failure where the input event is required
to trigger the failure. Most failures require multiple preceding
events, so the sum of the “%” column is greater than 100%.

https://www.usenix.org/system/files/conference/osdi14/osdil14-paper-yuan.pdf



https://www.usenix.org/system/files/conference/osdi14/osdi14-paper-yuan.pdf

Studying the cascading nature of these failures

Simple Testing Can Prevent Most Critical Failures: An Analysis of Production Failures in Distributed Data-Intensive Systems
(Yuan et al, OSDI 2014)

Region (table) size grows > threshold

Split region
Remove old region’s metadata from META table

tr§p§j_t( ) X E-'Iakyfile system returned J

} catch (Exception ex) {' NullPointerException

LOG.error(“split failed. .”);4—/
+ retry_split(); // fix: retry!
}

—— Errors ignored (25%) ——

35% ﬁ\m A Abort in over-caught
S w exceptions (8%)

I t handling of
ncorr.e.c a.n mgq errors S—— “TODO” in handler (2%) —
explicitly signaled in s.w.

Easily detectable (23%) —
(e.g., h.w. fault, 57% JPEEIC Complex bugs (34%)——

bugs, misconfig.

Region split failed: old region removed
but new regions not created --- Data loss!

Figure 7: A data loss in HBase where the error handling was

simply empty except for a logging statement. The fix was to
retry in the exception handler.

(%00T) sa4n|ie aiydosiseie)

100% 2% @tent eer ey |
. . . . . namenode.registerDatanode() ;
Figure 5: Break-down of all catastrophic failures by their error handling. + )} catch (RemoteException e) |
4 // retry. RemoteExcepion is thrown
} catch (Throwable t) {  due to glitch in namenode

System.exit (-1);
} | Only intended for IncorrectVersionException |

Figure 8: Entire HDFS cluster brought down by an over-catch.

https://www.usenix.org/system/files/conference/osdi14/osdil14-paper-yuan.pdf



https://www.usenix.org/system/files/conference/osdi14/osdi14-paper-yuan.pdf

Taking Action: Detecting bad error handlers

Simple Testing Can Prevent Most Critical Failures: An Analysis of Production Failures in Distributed Data-Intensive Systems
(Yuan et al, OSDI 2014)

¢ Crlterla: Svs Handler Bug Bad practice False
ystem blocks total / confirmed | ignore / abort / todo || total / confirmed | ignore / abort / todo || pos.

n n Cassandra 4,365 2 2 2 - - 2 2 2 - - 9

» Catch block is empty or just Cludsack | 6786 | 27 24 | 25 - - |15 2 | & 1 2 |

" " HDEFS 2,652 24 9 23 - 1 32 5 32 - - 16

Contalns d prlnt HBase 4,995 16 16 11 3 2 43 6 35 5 3 20

] ] Hive 9,948 25 15 23 - 2 54 14 52 - 2 8

« Catch block contains TODO or fix Tomeat | 5257 || 7 4 6 1 - |23 3 17 4 2 |30

Spark 396 2 2 . . 2 1 1 1 E E 2

. YARN/MR2 | 1,069 13 8 6 - 7 15 3 10 4 1 1

« Catch block for “Exceptlon” or Zookeeper | 1,277 5 5 5 - - |24 3 23 - 1 |9
. Total 36,745 121 85 101 4 16 379 58 354 14 11 115

“Throwable” that calls System.exit() o

Table 9: Results of applying Aspirator to 9 distributed systems. If a case belongs to multiple categories (e.g., an empty handler
. may also contain a “TODO” comment), we count it only once as an ignored exception. The “Handler blocks” column shows the
¢ ACt | O n ab I e/ u Sefu I ? number of exception handling blocks that Aspirator discovered and analyzed. “-” indicates Aspirator reported 0 warning.

https://www.usenix.org/system/files/conference/osdi14/osdil14-paper-yuan.pdf



https://www.usenix.org/system/files/conference/osdi14/osdi14-paper-yuan.pdf

Studying Defect Density

“A Large Scale Study of Programming Languages and Code Quality in Github” (Ray et al FSE 14)

» Research question: What is the effect of programming languages on software
quality?

» Methodology: Download 729 projects written in 17 language, look for correlations in
languages/defects

» Categorize languages by hand as “functional”, “strongly typed”, etc

» Identify bug-fixing commits (includes keyword ‘error’, ‘bug’, fix’, ‘issue’, ‘mistake’,
‘Incorrect’, ‘fault’, ‘detect’, and ‘flaw’)

 Build a classifier to label bugs as performance, security, etc.

» Examine correlations between languages, language properties, bugs, bug classes



Studying Defect Density

“A Large Scale Study of Programming Languages and Code Quality in Github” (Ray et al FSE 14)

Are functional languages less buggy than others? Are some defect categories more common per-language?

Table 8: While the impact of language on defects varies across defect category, language has a greater impact on specific categories than it does on

T : . l . .
able 7: Functional languages have a smaller relationship to defects defects in general. For all models above the deviance explained by language type has p < 3.031e — 07.

than other language classes where as procedural languages are either
greater than average or similar to the average. Language classes are

coded with weighted effects coding so each language is compared to the T - 1(\’(1)621;;{_ _ — ?gr;cg)rr_c_n.cy - ?chg;y‘ _ - fgn[;x(r)t;_ _
_ : - ntercep -T. : —8. : -T. D —6. :
grand mean. AIC=10419, Deviance=1132, Num. obs.=1067 log commits 232 (0.12)*" 260 (0.21)"" 204 (0.15)*" 203 (0.11)*"
log age 0.31 (0.15)" 0.37 (0.24) 0.74 (0.18)""" 0.14 (0.13)
Defective Commits log size 0.00 (0.09) -0.23  (0.16) —0.07  (0.11) 0.30 (0.08)***
(Intercept) =313 (0.10)°"" log devs 0.18 (0.10) 0.25 (0.17) 0.46 (0.14)*** | —0.03 (0.10)
log commits 0.96 (0.01)"* c 1.81  (0.11)*** 0.58 (0.22)** 0.51 (0.17)** 0.67 (0.12)***
log age 0.07 (0.01)*"" C++ 1.14  (0.10)*** 1.18  (0.18)**" 0.49 (0.15)** 1.15  (0.11)***
log size 0.05 (0.01)**" o —0.05 (0.17) 0.93 (0.24)*** | —0.30 (0.22) —0.02  (0.16)
log devs 0.07  (0.01)*** Objective-C 1.47 (0.15)*** 0.52 (0.29) —-0.04 (0.23) 1.16 (0.15)***
Functional-Static-Strong-Managed -0.25 (0.04)""F Go 0.00 (0.25) 1.73  (0.30)""" 0.55 (0.27)" —0.38  (0.24)
Functional-Dynamic-Strong-Managed -—0.17 (0.04)*"" Java 0.59 (0.14)""" 0.97 (0.22)"°" 0.14  (0.18) 0.32  (0.13)"
Proc-Static-Strong-Managed —0.06 (0.03)" CoffeeScript ~0.36  (0.23) ~1.64 (0.55)"" ~0.26  (0.26) 0.00 (0.19)
Script-Dynamic-Strong-Managed 0.001 (0.03) JavaScript —=0.11  (0.10) -0.12  (0.17) -0.02  (0.12) ~0.16  (0.09)
Script-Dynamic-Weak-Managed 0.04 (0.02)" TypeScript -1.32 (0.40)*" -2.15 (0.98)" -1.34 (0.41)"" -0.34 (0.07)"""
Proc-Static-Weak-Unmanaged 0.14 (0.02)""*° Ruby -1.12  (0.20)*"" | —0.82 (0.30)"" —0.24  (0.20) ~0.34  (0.16)"
"**p < 0.001, "p < 0.0L, "p < 0.05 Php -0.63 (0.17)*** | —1.64  (0.35)**" 0.27 (0.19) -0.61  (0.17)**"
Python —0.44 (0.14)** | —0.21 (0.23) 0.25 (0.16) —0.07 (0.13)
Perl 0.41 (0.36) —0.86 (0.86) —0.16  (0.43) —0.40 (0.40)
Scala —0.41 (0.18)* 0.73 (0.25)*" —0.16 (0.22) —0.91 (0.19)***
Result 2: There is a small but significant relationship be- Clojure —1.16  (0.27)*"" 0.10 (0.30) —0.69 (0.26)"" —0.53 (0.19)""
tween language class and defects. Functional languages have Erlang —0.53  (0.23)" 0.76  (0.29)™" 0.73  (0.22)*" | 0.65 (0.17)"""
a smaller relationship to defects th her dural Haskell —0.22 (0.20) —0.17  (0.32) —0.31 (0.26) —0.38 (0.19)
ma TR B2 GQClRs SUES CRECT PRACEESns: OF AIC 3033.55 2234.29 3411.57 4188.71
scripting Ianguages- BIC 3143.90 2344.63 3521.92 4299.06
Log Likelihood -1494.77 -1095.14 -1683.79 -2072.36
Deviance 905.38 666.41 921.50 1070.60
Num. obs. 1114 1114 1114 1114
Residual Deviance (NULL) 8508.6 3426.5 33725 6071.5
Language Type Deviance 587.2 157.03 61.40 303.8

TTp < 0.001, "7 p < 0.01, " p < 0.05

Result 4: Defect types are strongly associated with lan-
guages; Some defect type like memory error, concurrency er-
rors also depend on language primitives. Language matters
more for specific categories than it does for defects overall.




Threats to Validity

As stated in Section 5 of “A Large Scale Study of Programming Languages and Code Quality in Github” (Ray et al FSE 14)

» Why not use a bug database? “We wanted to capture the issues that
developers continuously face in an ongoing development process, not just the
reported bugs”

» Labeling projects by domain might be biased, but another author double-
checked

» Categorization might be biased, but hand-sampled 180 random fixes and
found overall precision 84%, recall 84%

» Categorizing languages (e.g. “functional”, “procedural”) could be subjective

» Qutside factors might impact the incidence of bugs-per-language



Brainstorm: Threats to Validity

“A Large Scale Study of Programming Languages and Code Quality in Github” (Ray et al FSE 14)

» Research question: What is the effect of programming languages on software
quality?

» Methodology: Download 729 projects written in 17 language, look for correlations in
languages/defects

» Categorize languages by hand as “functional”, “strongly typed”, etc

» Identify bug-fixing commits (includes keyword ‘error’, ‘bug’, fix’, ‘issue’, ‘mistake’,
‘Incorrect’, ‘fault’, ‘detect’, and ‘flaw’)

 Build a classifier to label bugs as performance, security, etc.

» Examine correlations between languages, language properties, bugs, bug classes



There were more threats to
validity.

 Bug categories are inconsistently labeled

e Not all commits were included, some were
duplicates

* Detecting “fix” commits is very inaccurate

* Other potential threats: project age, bug rate,
developers; only consider open source software

 Most important: is this even a question we
should try to answer?

On the Impact of Programming Languages on Code Quality:
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How to determine what to study?

Consider these questions from the experts at Google’s SE productivity team

 What result are you expecting to find, and why?
* |f the data supports the expected result, what action will be taken?
* |f the data supports a negative result, will appropriate action be taken?

 Who is going to decide to take action on the result, and when would they do
it?

[Software Engineering @ Google Ch 7, C. Jaspan]



https://learning.oreilly.com/library/view/software-engineering-at/9781492082781/ch07.html#measuring_engineering_productivity

Measuring and Improving Engineering Productivity
Example: Code Review Processes

Project lead

Education
Maintaining
P Maintaining norms
' . norms Gatekeeping
/ Readability Other
reviewers Developer teams
Education _
You need to have 100’s of successful Maintaining Egzgg) (;” revention
changes integrated before you can be a norms  ~ P
readability reviewer New team Other team
Is this hazing? members members

Do linters replace this?

“Modern Code Review: A Case Study at Google”, Sadowski et al, ICSE 2018



How do we measure process efficiency?

Goal/Signal/Metric framework

e (Goal: desired end result

» Signal: How we’re likely to know if we’ve achieved the end result, may not be
measurable

* Metric: A proxy for a signal, which can actually be measured

[Software Engineering @ Google Ch 7, C. Jaspan]



https://learning.oreilly.com/library/view/software-engineering-at/9781492082781/ch07.html#measuring_engineering_productivity

Engineering Productivity: A Broad Goal
QUANTS components

* Quality of the code (Is it tested? Is it maintainable?)
e Attention from engineers (Does the process distract engineers?)

* |ntellectual complexity (How does the complexity of the process relate to the
complexity of the task?)

 Tempo and velocity (How quickly can engineers accomplish their tasks?)

o Satisfaction (How happy are engineers?)

[Software Engineering @ Google Ch 7, C. Jaspan]



https://learning.oreilly.com/library/view/software-engineering-at/9781492082781/ch07.html#measuring_engineering_productivity

to Metrics

From Quality Goals

McCall Quality Model

Use Factor Criteria
Communicativeness -
Consistenc .
Product Z... Reliability Y
operation \ Device Efficiency —™
Efficiency Accessibility -
Completeness .
Reusability METRICS
Structuredness ™
Maintainability Conciseness ™
Product Device independence —™
revision N Portabilit
\ y Legability e
Testability Self-descriptiveness — ™
Traceability ™

“*A Framework for the Measurement of Software Quality”, Cavano & McCall



https://dl.acm.org/doi/10.1145/800283.811113

From Quality Goals to Metrics

McCall Quality Model

Maintainability

Correctability

Testability
Expandability

Faults count

Degree of testing

1]

Effort

Change counts

OO0

Closure time
|solate/fix time
Fault rate

Statement coverage

est plan completeness

Resource prediction
Effort expenditure

nange effort
nange size
nange rate




From Goals to Signals and Metrics

Readability Review

* Goal: “Engineers are more productive as a result of the readability process.” [Partial list]

» Signal: “Engineers who have been granted readability judge themselves to be more productive than
engineers who have not been granted readabillity.”

* Metric: “Quarterly Survey: Proportion of engineers reporting that they’re highly productive”

» Signal: “Changelists (CLs) written by engineers who have been granted readability are faster to review
than CLs written by engineers who have not been granted readability.”

* Metric: “Logs data: Median review time for CLs from authors with readability and without readability”

» Signal: “CLs written by engineers who have been granted readability are easier to shepherd through
code review than CLs written by engineers who have not been granted readability.”

 Metric: “Logs data: Median shepherding time for CLs from authors with readability and without
readabillity”

[Software Engineering @ Google Ch 7, C. Jaspan]



https://learning.oreilly.com/library/view/software-engineering-at/9781492082781/ch07.html#measuring_engineering_productivity

From Goals to Signals and Metrics

Readability Review

 Goal: “Engineers write higher-quality code as a result of the readability process.”

» Signal: “Engineers who have been granted readability judge their code to be of higher
quality than engineers who have not been granted readability.”

* Metric: “Quarterly Survey: Proportion of engineers who report being satisfied with the
quality of their own code”

* Signal: “The readability process has a positive impact on code quality.”

* Metric: “Readability Survey: Proportion of engineers reporting that readability reviews
have no impact or negative impact on code quality”

* Metric: “Readability Survey: Proportion of engineers reporting that participating in the
readability process has improved code quality for their team”

[Software Engineering @ Google Ch 7, C. Jaspan]



https://learning.oreilly.com/library/view/software-engineering-at/9781492082781/ch07.html#measuring_engineering_productivity

Readability Review: The Conclusion

* Engineers who had readabillity:
* Felt satisfied
e Felt that they learned from the process
* Had their code reviewed faster

e Survey data identified pain points in the process that were folded into the
Process

 Readabillity continues.

[Software Engineering @ Google Ch 7, C. Jaspan]



https://learning.oreilly.com/library/view/software-engineering-at/9781492082781/ch07.html#measuring_engineering_productivity

Code Review on GitHub

“First Come First Served: The Impact of File Position on Code Review” (Fregnan et al ESEC/FSE 2022)

 Research question: “Does the order in which a file is shown in a review bias the
outcome of the review process?

 Methodology:

Study 138 open source projects
on GitHub to identify correlation
between order and number of
comments

Controlled experiment, participants
review code with seeded defects,
vary the ordering

pac<age.jscon



Code Review on GitHub

“First Come First Served: The Impact of File Position on Code Review” (Fregnan et al ESEC/FSE 2022)

Does file position influence number of comments? Does file position influence number of comments?

S . Table 5: Participants who found/not found each bug divided
8 by treatment: Corner Case defect (CC) first or Missing Break
§ defect (MB) first.
N

£8 Corner Case Missing Break

aé & Found Not found | Found Not found

83 CC;-MB;, 34 22 24 32

52 | 2% 2761 MB/-CC; 18 32 26 24

£g o 2073 p-value: 0.011 p-value: 0.346

z - 1,809 phi-coefficient: 0.247  phi-coefficient: 0.091
§ odds ratio: 2.75 odds ratio: 1.44
o

1st 2nd 3rd 4th 5th

Relative file position

Figure 4: Distribution of comments in a PR with five files.

Does file position influence review time?

1500 -

1000 -

500 -

File 1 File 2 File 3 File 4 File 5

Treatment BE cCfirst B M8 first

Figure 6: Time (in seconds) participants visualized each file.
To improve the clarity, we limited the size of the Y axis.



On Productivity Incentives

Goodhart’s Law: When a measure becomes a target, it ceases to be a good measure

OUR GOAL TS TO WRITE
BOGFREE SOFTWARE.
T'LL PAY A TEN-DOLLAR
BONUS FOR EVERY BUG
YOU FIND AND FINX,

1 HOPL T'M GONNA
THIS WRITE ME A
DRIVES NEW MINIVAN
THE RIGKT  THIS AFTER-
BEHAVICR.  NOON!

\
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s
/ 5

///'/_3 © 1995 United Feature Syndicate, Inc.(NYC)

S. AMm s E-mail: SCOTTADAMS@AOQOL.COM

Dilbert © 2021, Andrews McMeel Syndication


https://dilbert.com/strip/1995-11-13

Productivity Metrics

Intrinsic & Extrinsic Motivations
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nerformance

r‘ush creativity
'owd out good behavior
ncourage cheating, shortcuts, and
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Can become addictive
Can foster short-term thinking
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A closing word on productivity

“On the cruelty of really teaching computing science”

From there it is only a small step to measuring ‘programmer
productivity’ in terms of ‘number of lines of code produced
per month.’ This is a very costly measuring unit because it
encourages the writing of insipid code, but today | am less
Interested in how foolish a unit it is from even a pure
business point of view. My point today is that, if we wish to
count lines of code, we should not regard them as ‘lines
produced’ but as ‘lines spent’: the current conventional
wisdom is so foolish as to book that count on the wrong side
of the ledger.

- Edsger W. Dijkstra
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