Testing - Oracles and Adequacy

Advanced Software Engineering
Spring 2023

© 2023 Jonathan Bell, CC BY-SA

http://creativecommons.org/licenses/by-sa/4.0/

A When survey is active, respond at pollev.com/jbell

2-7 Testing Oracles Overview

0 done
0 underway

Pawered hyv ‘h Pall Fvervwhere

Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app

& When poll is active, respond at pollev.com/jbell

Have you written tests for software besides a course

project before?

Yes

No

Total Results: 0

Pawered hv ‘h Pall Fvervwhere

.. Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app -.

& When poll is active, respond at pollev.com/jbell

Which (if any) of these testing technologies/tools have you

used?

xUnit (JUnit, PyUnit, etc)

Behavioral testing tools (Cucumber, jest, mocha, etc)
Selenium

QuickCheck

Fuzzers

Manual testing

Total Results: 0

Pawered hv ‘h Pall Fvervwhere

.. Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app -.

Do you have a software project that you are working on and
Interested in creating automated tests for? If so, are there

any particular aspects to it that are making it hard to test?

Join by Web

o Go to PollEv.com
€) Enter JBELL

e Respond to activity

© Instructions not active. Log in to activate

Total Results: 0

Pawered hv ‘h Pall Fvervwhere

B Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app

Big question: Quality Assurance

“Proving” that “the program?” is “correct”

Verification Testing

Prove properties about a program Check behaviors of a program
High assurance Assurance?

What is a test?

» “System under test”
* Inputs

* Oracles

Each test might target a different scope

« Unit tests: SUT = a single method/class/object
* Integration tests: SUT = combinations of units, a subsystem

« System tests: SUT = whole system being developed

Good test suites have a strong foundation of unit tests

£ D

/ \\
(Manual Tests)

Integration — —7

15%

/1
\ Automated / b
\ GUI Tests //

7
\ Integiation /

/
\\ Tests

\ Unit /
\Tests/
\ /
\V/

Unit 80%

Google’s Ideal Software Testing Pyramid Software Testing Anti-Pattern: Ice Cream Cone Testing

Figures: “Software Engineering at Google: Lessons Learned from Programming Over Time,” Wright, Winters and Manshreck, 2020 (O’Reilly)

What makes a good test suite?

Brainstorming

(The pyramid, not the ice cream cone)

If a test fails, easy to debug

Fast/cheap to run - including in a regression context where we know what code changed

Minimum false positives (test fails when there is not a fault)

Coverage of common (all?) behaviors/code

+ Scalable and maintainable over time - readable

- Tests should be isolated (no contamination of external sources)

» Test should be repeatable/consistent/deterministic wrt SUT

» Test suites are optimized to detect crucial issues sooner, provide actionable output

- Minimum false negatives (it finds all of the bugs)

» Designed and organized in a way where a newcomer can understand; traceable from tests to their purpose

« Mimic real-world inputs/outputs/edge cases

What makes a good test?

» Desirable properties of test suites:
* Find bugs
* Run automatically
» Are relatively cheap to run
» Desirable properties of individual tests:
» Understandable and debuggable

- No false alarms (not “flaky”)

What is “correct” behavior?

Test oracles

» Example-based: “For a given input, some assertions should be true”
* Properties: “All inputs in some class should satisfy some property”

* “lt doesn’t crash”

» “Changing the input in some way should maintain the same output”
* Regression: “lt provides the same output as it used to”

» Differential: “Two systems implementing the same spec should provide the same
output”

» Human oracle: “For a given user, they should be satisfied”

Example-Based Testing
AKA “traditional” testing?

» Interpret the specifications for the program, encode those specifications into
input/output/behavior examples

» Key problems: How to create the examples? How to encode them in an
automated test?

it ('Removes the player from the list of occupants and emits an interactableUpdate event', () => {
// Add another player so that we are not also testing what happens when the last player leaves
const extraPlayer = new Player(nanoid(), mock<TownEmitter>());

testArea.add(extraPlayer);
testArea.remove(newPlayer);

expect(testArea.occupantsByID).toEqual([extraPlayer.id]);
const lastEmittedUpdate = getLastEmittedEvent(townEmitter, 'interactableUpdate');

expect(lastEmittedUpdate) .toEqual({ topic, id, occupantsByID: [extraPlayer.id] });

What is a “good” test suite?

Interpretation: Coverage of Input Space

» (Manually) enumerate possible “equivalence
classes” of inputs

®
* Ensure that each equivalence class is covered ® \ /(

by a test

- Pay extra attention to boundary cases

If the program works for input A, it will probably work for input B

Property Testing

» Key idea: Instead of enumerating examples of inputs in an equivalence class,
specify the equivalence class, and allow the testing framework to generate
INnputs

All possible inputs

Property Test

)(Example Test Property Test

)(Example Test

Property Testing: “Hello World” Example

- for all (a, b, c) strings
» the concatenation of a, b and c always contains b

» What other properties can we define for concatenation, and do you think that
they will be likely to reveal bugs?

Property Testing: No Crash

“Don't do bad things”

* Not a signal that good things eventually happen, but still shockingly effective
at finding defects

public void testBZip2CompressorStream(byte €@Size(min=100, max=100)[] bytes){
OutputStream o = new ByteArrayOutputStream();
try |

BZip2CompressorOutputStream bo = new BZip2CompressorOutputStream(o);
bo.write(bytes);
bo.finish();
} catch (IOException e){
Assume.assumeNoException(e);

}

Property Testing: “Round Trip Conversion” Example

» Consider writing this kind of property test for any code that transforms an
iInput in a way that is also reversible

public void roundTripBzip2Test(byte @Size(min = 100, max = 100) [] bytes) throws IOException {
ByteArrayOutputStream o = new ByteArrayOutputStream();
BZip2CompressorOutputStream bo = new BZip2CompressorOutputStream(o);
bo.write(bytes);
bo.finish();
byte[] compressedBytes = o.toByteArray();
byte[] decompressedBytes = new byte[1024];
new BZip2CompressorInputStream(new ByteArrayInputStream(compressedBytes))
.read (decompressedBytes, 0, decompressedBytes.length);
Assert.assertArrayEquals(bytes, decompressedBytes);

Property Testing: Self Driving Cars

 Problem: ML application learns
from traffic images, determines how
to steer car safely

» How do we exhaustively generate
inputs?

* Approach: apply image
transformations to known cases

“DeepTest: Automated Testing of Deep-Neural-Network-driven Autonomous Cars,” Tian et al, ICSE 2018

Property Testing: Graphics Drivers

* Problem: Graphics shader compilers are hard to
implement correctly. What is “correct?”

» One idea: Given a shader that creates an image,
transform the shader in a way that shouldn’t
cause a change in the generated image

Automated Testing of Graphics Shader Compilers

ALASTAIR F. DONALDSON, Imperial College London, UK
HUGUES EVRARD, Imperial College London, UK
ANDREI LASCU, Imperial College London, UK

PAUL THOMSON, Imperial College London, UK

We present an automated technique for finding defects in compilers for graphics shading languages. A key
challenge in compiler testing is the lack of an oracle that classifies an output as correct or incorrect; this is
particularly pertinent in graphics shader compilers where the output is a rendered image that is typically under-
specified. Our method builds on recent successful techniques for compiler validation based on metamorphic
testing, and leverages existing high-value graphics shaders to create sets of transformed shaders that should
be semantically equivalent. Rendering mismatches are then indicative of shader compilation bugs. Deviant
shaders are automatically minimized to identify, in each case, a minimal change to an original high-value
shader that induces a shader compiler bug. We have implemented the approach as a tool, GLFuzz, targeting the
OpenGL shading language, GLSL. Our experiments over a set of 17 GPU and driver configurations, spanning
the main 7 GPU designers, have led to us finding and reporting more than 60 distinct bugs, covering all tested
configurations. As well as defective rendering, these issues identify security-critical vulnerabilities that affect
WebGL, including a significant remote information leak security bug where a malicious web page can capture
the contents of other browser tabs, and a bug whereby visiting a malicious web page can lead to a "blue
screen of death” under Windows 10. Our findings show that shader compiler defects are prevalent, and that
metamorphic testing provides an effective means for detecting them automatically.

CCS Concepts: « Software and its engineering — Software testing and debugging; - Computing
methodologies — Rasterization;

Additional Key Words and Phrases: GPUs, OpenGL, GLSL, testing, shaders, compilers

ACM Reference Format:

Alastair F. Donaldson, Hugues Evrard, Andrei Lascu, and Paul Thomson. 2017. Automated Testing of Graphics
Shader Compilers. Proc. ACM Program. Lang. 1, OOPSLA, Article 93 (October 2017), 29 pages.
https://doi.org/10.1145/3133917

1 INTRODUCTION

Real-time 2D and 3D graphics, powered by technologies such as OpenGL [Kessenich et al. 2016¢],
Direct3D [Microsoft 2017a] and Vulkan [Khronos Group 2016], are at the heart of application
domains including gaming and virtual reality, and are employed in rendering the graphical interfaces
of operating systems, interactive web pages, and safety-related products such as automated driver

This work was supported by EPSRC Early Career Fellowship (EP/N026314/1), an EPSRC-funded studentship via the Centre
for Doctoral Training in High Performance Embedded and Distributed Systems (EP/L016796/1), and Imperial College's
EPSRC Impact Acceleration Account.

Authors’ addresses: A. F. Donaldson, A. Lascu, H. Evrard, P. Thomson, Department of Computing, Imperial College London,
London, SW7 2AZ, UK.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,
contact the owner/author(s).

©® 2017 Copyright held by the owner/author(s).

2475-1421/2017/10-ART93

httrmel1das avra /10 114A5/21227017

Property Testing: Graphics Drivers

Config. Injection Variant image

if(injSwitch.x > injSwitch.y) {
if(injSwitch.x > injSwitch.y) { return;
int f =1;

2

(..]

if(injSwitch.x > injSwitch.y) { return; }

1 (AMD)

if(injSwitch.x > injSwitch.y) {
for(int i = 0; i <1; 1 ++) {
k =0.9;
}
D

10 (ARM)

uniform float GLF_13time; |

float GLF_13map() ([..] }

(..]

float GLF_13t = 1.9;

for(int GLF_13i = 0; GLF_13i < 1; GLF_13i++)
if(GLF_13t > 1.0) { continue; }
GLF_13t += GLF_13map();

)

14 (ARM)

for(int ¢ = 0; c < 1; c++) {
if(j ==0) {
return vec4(0.8, 0.5, 0.5, 1.0);
}

9 (Apple)

return vec4(0.8 * injSwitch.y, 0.7, 0.4, 1.0);

if(injSwitch.x > injSwitch.y) {
for(int 1 = 0; 1 < 10; 1 ++) { continue; }
2
’[..]
if(injSwitch.x > injSwitch.y)
{ if((p.z > 60.)) { break;)} J

15 (ImgTech)

[..]

vec2 uvs = [..];

vecd uvs_vec = vecd(0.9, uvs, 0.0);

/* Replace uvs with uvs_vec.yz after */

3 (Intel)

SN N

vec3 hsbToRGB(float h, float s, float b) {
return b » ((false ? (--s) :| 1.0)| - s)
+ (b - (false ? (--s) :|b » (1.0 - s)jjp
* clamp(abs(abs((false ? (--s) :/ 6.0 D/ = [..];
)

16 (NVIDIA)

/* Multiple instances of the following,
where v is a literal value */
if(injSwitch.x > injSwitch.y)
return v;

17 (Qualcomm)

“HENE NS

Table 2. Wrong image examples from different configurations. The image produced by the original shader is
on the left, the image produced by the variant shader is on the right, and the code injection (highlighted in
yellow) that induces the bug is shown in the middle. Recall that injSwitch is set to (0.0, 1.0) at runtime.

Automated Testing of Graphics Shader Compilers

ALASTAIR F. DONALDSON, Imperial College London, UK
HUGUES EVRARD, Imperial College London, UK
ANDREI LASCU, Imperial College London, UK

PAUL THOMSON, Imperial College London, UK

We present an automated technique for finding defects in compilers for graphics shading languages. A key
challenge in compiler testing is the lack of an oracle that classifies an output as correct or incorrect; this is
particularly pertinent in graphics shader compilers where the output is a rendered image that is typically under-
specified. Our method builds on recent successful techniques for compiler validation based on metamorphic
testing, and leverages existing high-value graphics shaders to create sets of transformed shaders that should
be semantically equivalent. Rendering mismatches are then indicative of shader compilation bugs. Deviant
shaders are automatically minimized to identify, in each case, a minimal change to an original high-value
shader that induces a shader compiler bug. We have implemented the approach as a tool, GLFuzz, targeting the
OpenGL shading language, GLSL. Our experiments over a set of 17 GPU and driver configurations, spanning
the main 7 GPU designers, have led to us finding and reporting more than 60 distinct bugs, covering all tested
configurations. As well as defective rendering, these issues identify security-critical vulnerabilities that affect
WebGL, including a significant remote information leak security bug where a malicious web page can capture
the contents of other browser tabs, and a bug whereby visiting a malicious web page can lead to a "blue
screen of death” under Windows 10. Our findings show that shader compiler defects are prevalent, and that
metamorphic testing provides an effective means for detecting them automatically.

CCS Concepts: « Software and its engineering — Software testing and debugging; « Computing
methodologies — Rasterization;

Additional Key Words and Phrases: GPUs, OpenGL, GLSL, testing, shaders, compilers

ACM Reference Format:

Alastair F. Donaldson, Hugues Evrard, Andrei Lascu, and Paul Thomson. 2017. Automated Testing of Graphics
Shader Compilers. Proc. ACM Program. Lang. 1, OOPSLA, Article 93 (October 2017), 29 pages.
https://doi.org/10.1145/3133917

1 INTRODUCTION

Real-time 2D and 3D graphics, powered by technologies such as OpenGL [Kessenich et al. 2016¢],
Direct3D [Microsoft 2017a] and Vulkan [Khronos Group 2016], are at the heart of application
domains including gaming and virtual reality, and are employed in rendering the graphical interfaces
of operating systems, interactive web pages, and safety-related products such as automated driver

This work was supported by EPSRC Early Career Fellowship (EP/N026314/1), an EPSRC-funded studentship via the Centre
for Doctoral Training in High Performance Embedded and Distributed Systems (EP/L016796/1), and Imperial College's
EPSRC Impact Acceleration Account.

Authors’ addresses: A. F. Donaldson, A. Lascu, H. Evrard, P. Thomson, Department of Computing, Imperial College London,
London, SW7 2AZ, UK.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,
contact the owner/author(s).

©® 2017 Copyright held by the owner/author(s).

2475-1421/2017/10-ART93

httrmel1dns ara/10 114A5/2127017

Regression Testing: “Snapshot” Testing

» The first time the test runs, it saves a “snapshot” of the rendered GUI

» Subsequent runs will fail if the snapshot changes

import renderer from 'react-test-renderer’; FLink_react-test,js

import Link from '../Link'; e renders correctly
received). toMatchSnapshot
1t ('renders correctly', () => {
const tree = renderer
.create(<Link page="http:// =Landps 108 =l
www . facebook.com">Facebook</Link>)
.toJSON() ;

. - href="http://www. facebook.com"
expect(tree).toMatchSnapshot(); i href=,,htt2://: instagran. con"
1)

Snapshot name: "renders correctly 1°

Facebook
~ Instagram

Regression Testing: APl Evolution

» Record the API requests and responses that clients make

» Test new versions of the API by identifying requests that result in different
responses (“breaking changes”)

Production traffic Current version

Clients (created Capture/Replay of API

by many third Production traffi Proxy for

parties) Testing
, Next version of
Replay production

API
traffic for testing

Regression Testing: General Record/Replay

» Example: How to test an algorithmic trading system that consumes real time
streaming data”

Real-time stock
Data streams

trade data ,
into SUT
-ti : : Trading
Real-time news Algorithmic
data . — (€ CiSiONS COME
trading system Ut

(More real-time
data sources)

Differential Testing: JVMs

* Problem: How to test JVMs?

- JVM is very well-specified, but there are
nonetheless corner cases & missing tests

» Context: There are many different JVM
Implementations

» Solution: Compare behavior of each JVM on some
class files

» Each discrepancy is a bug in at least one
implementation (or the specification!

Coverage-Directed Differential Testing of JVM Implementations

Yuting Chen

Department of Computer Science and Engineering
Shanghai Jizo Tong University, Chin:
chanyl@cs.sjtu.adu.en

Chengnian Sun Zhendong Su

Department of Computer Science
University of Cal:formiz. Davis, USA
Tersun, sul@ecs ucdav s.edu

Abstract

Jave virtual machine (JVM) is & core technology, whose
relianiliny is eritical. Testing VM implementations requires
pa.nstaking effort in designing test classfiles (= . class)
along with their test vrucles. An allernative i+ W employ
binary fuzzing o differentally test FVMs by hlindly mutaring
sevding classliles wnd then executing e resulling mutants on
different JVM binarizs for revealing inconsisten: behaviors.
However, this blind approach 1s not cos: effective in practice
because mos: of the mutants are invalid and redundant.

‘T'hs paper tackles this challenge by introducing classfuzz,
a coveruge-diected Juggng upproach that focuses on repre-
sentative clossfiles for differentinl testing of JVMS® startup
processes, Qur core insight is 10 (1) mutate seeding classhiles
using a se: of predefined mutation operators (mutators) &nd
emnloy Markav Chamn Maonte Carlo (MCMU) sampiing 10
guice mutator selection, and (2) execute the mutants on a rel-
erence VM implementation and use coverages wnigquensss as
a discipline for accepung representative ones, The accepted
classfiles are used as inputs to differentially test diffarem
JVM implementations and hnd detects.

We have implemented classtuzz and conducted an exten-
sive cvaluation of it egainst existing fuzz testing algorithms.

Permiccion (0 mace CigRal oc hard copies of all or pa of thic werk for perswal or
chossomm s graninl w fhoul ke oo s dul cnpes sae ool sede o distrileg s
Sor peolit of coxarercial A vaniage and that Sopees diar Uu: nonce sad he Ivll ¢ tike
on the first pags Copyrighes (o components o7 this aore ! by @ hers than ACM
mus ke Foacrcd. Abst-actagz with crodii 1s permittcd. To ocpy otherwisg, or cpuklisa
0 podr O terves of 1o radistribee o Licts, reg lires pror speciic peemission andior 3
ke Kooy pemmsanns Fisn Pana o s@@icmang

PLDU16, Junc ©3-17, 2016, Sunta Barbasa, UA USA
@ 2016 ACM. 578 1.4506.4261.2/16006...515.20
Bitpefidx danoegs LT LESEZMRRAL 2N URAS

“Coverage-Directed Differential Testing of JVM Implementations” Chen et al, PLDI ‘16

Ting Sv

Shanghai Kev Laloratory of Trusiworthy Computing
East China Norma! University, China
tsuletgo@gmall.eom

Jianjun Zhao
Department of Compuier Science and Engineering
Shanghai Jiao Tong Univessity, China
Department of Advanced Infoumation Technology
Kyushu University, Japan
zhaos-| @cs sjtu.edu.cn

Our evaluztion results show that classfuzz can enhance the
ratio of discrepancy trigzering classfiles from 1.79% 10 11.9%%,
We have also reporied 62 JVM discrepancies, along wath the
test classriles, to JYM developers. Many of our reported is
snes have £'ready heen confirmed as TVM defeets, and some
even match recent Clarilicalions and chanpges w the Java SE 8
edition of the JVM specification.

Categories and Subjeet Deseriptors D25 [Software Engi-
neering |, Testing and Debugging—Testing tools {e.g., data
gererntors, coverage testng): D33 [Programming Lan-
guages : Language Constructs and Features—lzsses and ob-
jectss D3 [Programming Languages): Processors—Code
generatinn

General Terms Algonthms, Relishbity, Languages

Keywords Infferenhial testung, huzz testing, Java virtual
machine, MCMC sampling

1. Introduction
Jave Virtuz! Meachine (VM) is a mature Java technology. A
JVM is responsible Tor loeding, linking, and executing Java
classfiles (4 . cla=1a)in the same way an any platform [29].
Various JVMs (e, JVM implementat.ons), such as Oracle’s
HotSpot [3], IBM'5J2 7], Jikes RVM [3], Azul’s Zulu (6],
andd GNIUI's GIJ [2]. are avai’able and snill evolving They
adopt different inplementation lechniques (such s just-in-
time compilation, aherd-of-time compilation, and intepre-
tation) and adapt to diferent operating systems and CPU
architectures. To ensure their competibility, they must consis
tently implement a single JVM specification [25].

The reality is that no two JVMs are exactly alike, and they
can behave discrepantly when encountering corner cases or
mvald classhles: a Java class can run on some JVMs but net

Generalized Oracles: Human Evaluation

» Some oracles might be too difficult to encode in an automated test

* This Is an anti-pattern

Hi, Jon,

I went through the system test for |l 22ain. Can you please verify from the server side what
activities are logged this afternoon from me, including time stamp? My user name is || G

Thanks a lot!

Generalized Oracles: Human Evaluation
Usability Testing

* Observe real users interacting with your software - provide each user with a task,
monitor their progress towards completing that task

* Consider a diverse set of users that represent those who will use your software
» \alidate problems (and fixes) that you identify in cognitive walkthroughs

 Example: usability testing for Microsoft Academic

&l
® Top Institutions
. University of Oxion ‘ errt LLLLLLT o~
! : Dttawa Hospoital Rasgarch Institute ! .."".j j ..’.. I
e e] . - .
I———) | CochuneColsbortion ﬂ i‘|' m o
. Mas ! ¢ STV /Ly OF L rad ‘.'. .. .l
. stsarch Trisnole Perk Abby 5 4 3 2 1 0 Original post-GenderMag
ity of Gtana 0 1 2 3 4 5 Tim ‘ o
< IR Figure 14. Average number of action failures per person by
—— MORE Figure 13. Y-axis: Counts of the 20 men and women gender identification (orange: women, blue: men). In the
VORL participants by their facet values. (Same as Figure 2 but Original version, women’s action failure rates were over
broken out by gender.) Orange: women, blue: men. X-axis: twice as high as men’s; with the post-GenderMag redesign,
- Abby=Abby Facets, Tim=Tim Facets. Example: the left bar all failure rates went down, and the gender gap
k lg}lre 5 Is.sues 1 & 2 fllter_lng .redeﬂgn‘ (Left) Onglnal’_ List says that the only participant with 5 Abby facets (0 Tim disappeared.
of institutions with publication counts for each. (Right) facets) was a woman; the right pair of bars says that one
post-GenderMag: Shorter list of institutions and removed man and one woman had 5 Tim facets (0 Abby facets).

the publication counts that drew attention away from the . _ .
checkbox actionability. ftp://ftp.cs.orst.edu/pub/burnett/chi19-GenderMag-findToFix.pdf

https://academic.microsoft.com
ftp://ftp.cs.orst.edu/pub/burnett/chi19-GenderMag-findToFix.pdf

Generalized Oracles: Human Evaluation
A/B Testing

 Ways to test new features for usability, popularity, performance without a
focus group

« Show 50% of your site visitors version A, 50% version B, collect metrics on
each, decide which is better

it em » 23%

50 % visi conversion
e

see variation A

Variation A

me > Bgm > 1%

conversion

see variation B o
Variation B

Generalized Oracles: Human Evaluation
A/B Testing: PlanOut from Facebook (“N=10° user study”)

» Used to test advertising strategies (and Facebook functionality)

 Segment audience and define KPlIs, collect results

Experiment to:

Choose between multiple options

https://github.com/facebook/planout
https://www.slideshare.net/optimizely/opti-con-2014-automated-experimentation-at-scale

Generalized Oracles: Human Evaluation
A/B Testing: PlanOut from Facebook (“N=10° user study”)

QuickExperiment

EaasmanasAnE~ Esnsansa color: blue Eaaine
' size: medium
f \
s Hcolors -blue 8

color: green
> FER o
size: medium

=
=
O
2
-
(O
_
1
o
O
®
o
O
O
=
O

https://github.com/facebook/planout
https://www.slideshare.net/optimizely/opti-con-2014-automated-experimentation-at-scale

Generalized Oracles: Human Evaluation
A/B Testing: PlanOut from Facebook (“N=10° user study”)

PlanOut

https://github.com/facebook/planout
https://www.slideshare.net/optimizely/opti-con-2014-automated-experimentation-at-scale

Generalized Oracles: Human Evaluation
A/B Testing: PlanOut from Facebook (“N=10° user study”)

Experiment evaluation

% change from control to test
2 3

-2 -1 0 1

Confidence: \ 99 %]

https://github.com/facebook/planout
https://www.slideshare.net/optimizely/opti-con-2014-automated-experimentation-at-scale

What is a “good” test suite?

Interpretation: Coverage of Requirements

» Enumerate all inputs

 Enumerate all behaviors

» Check system wrt all inputs and
behaviors

» (Manually) create traceability links
between requirements and their tests

Coverage of Requirements at Google

“The Beyonceé Rule”

What is a “good” test suite?

Interpretation: Coverage of statements or branches

» Intuition: if a test doesn’t execute a
statement or branch, it sure isn’t checking its
behavior

» Automatically determine which statements or
branches are covered by a test

function magic(x: number, y: number)

let z = 0;

if (x 1==0) { @11
z = xXx + 10;

} else {412
z = 0;

}

if (y > 0) {4711
return y / z;

} else { T2

return X;

}
}

test(”100% branch coverage", ()
expect(magic(l, 22)).toBe(2);
expect(magic(0, -10)).toBe(0);
})i

//T1
/ /T2

{

What is a “good” test suite?

Interpretation: Other code-coverage metrics

- MCDC

» Like branch coverage, but requires every condition in each if statement is
taken and shown to affect decision outcomes independently

» Required for safety-critical avionics, automotive & space software
- Path coverage
» Has every possible route through the program been taken?

 General limitations?

Does Higher Branch Coverage Imply More Faults Found?

» “there Is a moderate to very high correlation between
the effectiveness of a test suite and the number of
test methods it contains”

* “there Is a moderate to high correlation between the
effectiveness and the coverage of a test suite when
the influence of suite size is ighored”

» “the correlation between coverage and effectiveness
drops when suite size is controlled for. After this
drop, the correlation typically ranges from low to
moderate, meaning it is not generally safe to assume
that effectiveness is correlated with coverage”

Coverage Is Not Strongly Correlated
with Test Suite Effectiveness

Laura Inozemlseva and Reid Holmes
Schoo! ¢f Compuler Science
Univarsity of Waterloo
Waterloa, ON, Ganada
{Iminozem,rtholmes}@uwaterlco.ca

ABSTRACT

The coverage of a test snite s otten used as a praxy for
its ability to detect Saults. However, provious studics that
investigated the corralstion between code coverage and test
suite effectiveness have failed to reach a cocsensus about the
nature end strenzth of the relationship bezweon thesc tost
suite charsctenstics, Moresver, many of the studies ware
dons with small or synthetic orograms, making it unclear
whether their resiits genoralize to langer prozrams, and zome
of the studies did nov account for the confounding influence
of test suite ste. Tn addicion, mest of ke stedies wers doze
with adeqguate suites, which are are rare m practics, sa the
results oy not generalize to sypical test suites

We have extuended these studies by evaluating the relativ:-
ship hetwern test suite sive, coverage, 2nd eFectivenrss for
large Jave programs Cur study is the largest o date in the
literature: we generabed 31,000 test suites for five systems
consisting of up to 724 000 lines of sourcs codz. We measured
the statement coversge, desxon coverage, and modified con-
dition coverage of these suites and usec mutation testing to
evaluate their fault detection effectiveness

We found that there 15 a low to moderate correlation
between coverage ond effectivenes wihen the number of test
cuses in Lhe suite s controlled for. To addition, we found thal
stromger farms of coverage co not provvide preater imsight
into the cffectiveness of the suite, Our results suggest that
coveragy, wiile uselul for identilying under-lested parts of a
program, should not he nsed as a coahity tarpet hecanse 1t 15
not a good indicator of test suite effoctivencss

Categories and Subject Descriptors

D.25 Software Enginecring|: Testing and Debugging;
D2 8 |Software Bngineering| Metrics—product mei-ics

General Terms

Messiement

Keywords

Uloverage test suite effectivenzss, test suite qulify

Perrmission e mske Cigilal or hand comes o7 'l or pert of this weck (or persooal or
clessroom use is granted without fee provided tht copizs ¢ not mace of disirfarc
for orcfr or commeereal advanuge and thar Soples bear his nxtice wad e ful. clianice
en ®e first page, Copyrights for scagen:ots of tas wark owned by others thae ACM
mas 2e honored. Asrracdng with crck is permitied. To cooy otheratse, or republish,
5 post o scrvers o o coditnibute to Rsts, reqaares price apcalic parmission and'or &
e Reqiest permissions rom Permissiomsidaem org

Copvright is held by the authoe/ow el s). Fublication rights Ikensed 0 ACM,

iCSE 13, \I:a)' 3 -Tene=7 72014, H',tlr'.oh:ul, Intia
ACM 978.1.4503.2756.5/ 14415
hupuiox.doicrg 0.1 152568225.255827 |

1. INTRODUCTION

Testing ie & important pars of producing high quality
software, but its effectivencss depends on the quality of the
test smite: aome smtes are bentes al denecting faalta than
others. Naturally, developers want their test suizes to be good
at exposing faulis, necessitating & method for measurnicg the
far 1 detection elfectiveness of a teat suite. "esting texthooks
often recommend coverage a: one of the metrics that cs
be used for this purpose (e.g., [28,34]). This is intuitively
apoealing, since it is clear that a test sune canmot. Bod bugs
in cod: it never cxeeuses: it is also suppartod by studics the:
have found a relat:onship between code coverage and fau:
detzction eliectivensss :-J: G, 1417, 24,32 ,3‘_‘]

IInfertinately, these stuciea do not agree on the steength
of the re.ationzhip bevween thes: test suite characteristics.
In addition, three issues wity toe studizs make it dificuls to
generalize their resnlna. Firan, some of the studes did noe
contral for toe size of the suite, Since coverage is increased
by adding code to existiong test casss or by adding new Ces:
cases tn the suite, the coverage of A test suite is correlated
witla its size. It is therefore not clear that coverage is related
to efectivenes: independent.v of th: nurmber of test cazes in
t e suite. Seconc, all but cne of the studies used small ar
synthrtic programs, making it unclear that their results hold
for the large programs sypical of industry, Third, many of the
stuchies omly compared adequate snites; that is suites thes
fully satished a particular coverage critorior. Sine: adequate
test suites are rase in practice, the resul:s of these studies
may not generalize ta more realistic test suites

I'his paper presents a new stucy of the reletionship hetween
test suite siza, coversze snd effectiveness, We crswer the
follow ng research cuestions e larpe Java prog-ams:

RESzARCH QUESTION 1. [y the eJevtoveness of a lesi suiie
correlated with the number ra_f test cases in the swite ?

REsSzARCH QUESTION 2. s the ¢fevtoveness of a lesi suile
entrelaterd wath wfs staferent ooerege deciccon coverage
and/or modificd condition coverage when the number of teat
cuses 1 e swle oy agnenal§

REs=ARCH QuesTion 3. Is the effectdveness of a test suite
corvrelaled with ifs sialerient covercge decision coveraye
and for modified condition coverage when the number of test
enscs in the swite & heid constant?

The peper makes the fallowing contributions:

e A comprehansive survey of previous studies that inves-
fig“f '\{ 'I]f' n*l:'i"m.\hip hv“fvw‘"n CONCTA :Tlt" 7“" "Hf'l"' ;V"-
ness (Section & and accow:panying onlme matcerial),

What makes a good test?

More than just coverage and oracles

* Jests should be hermetic: include all information and dependencies necessary to
run the test

» Jests should be clear: improves debugging later on
* Jests should be scoped as small as possible: faster and more reliable

* Jests should make calls against public APIs

“Software Engineering at Google: Lessons Learned from Programming Over Time,” Wright, Winters and Manshreck, 2020 (O’Reilly)

Good Tests are Not Flaky

» Flaky test failures are false alarms

Unordered Collections

» Tests that are hermetic defend against “test Floﬁngmt
order dependency” - failures due to tests 3%

running in other orders Rag&o\
Time-

* Most common cause of flaky test failures: 4%
*async wait” - tests that expect some Netw endency
asynchronous action to occur within a 9% :

timeout

Resource Leak
10%

» Good tests avoid relying on timing

[Luo et al, FSE 2014 "An empirical analysis of flaky tests”]

Flaky Test Example: Async/Wait

 Most common root cause of flakiness
 Difficult to avoid, but consider:

» Have more “small” tests that don’t require
concurrency

» Ensure sufficient resources available for running
tests

* Embed reasonable error detection to classify
test failures as likely to be “flaky” vs true
failures

Test fails!

Too late!

What is a “good” test suite?

Interpretation: It has strong oracles

» Strong oracles should fail the test if the behavior is incorrect
* How to evaluate the strength of oracles?
» Strawman - “Seeded Faults™:

» Create N variations of the codebase, each with a single manually-written
defect

» Evaluate the number of defects detected by test suite

» Test suite is “good” if it finds all of the bugs you can think of

Mutation Analysis Tests the Tests

Idea: What if many (real) bugs could be represented by a single, one-line “mutation” to the program?

public contains(location: PlayerLocation): boolean {

return (
location.x + PLAYER SPRITE WIDTH / 2 > this. x &&
location.x - PLAYER SPRITE WIDTH / 2 < this. x + this. width &&
location.y + PLAYER SPRITE HEIGHT / 2 > this. y &&
location.y - PLAYER SPRITE HEIGHT / 2 < this. y + this. height

)

Correct code for “Contains” check in Covey.Town

public contains(location: PlayerLocation): boolean {

return (
location.x + PLAYER SPRITE WIDTH / 2his._x & &
location.x - PLAYER SPRITE WIDTH / 2 his. x + this. width &&
location.y + PLAYER SPRITE HEIGHT / 2 > this. y &&
location.y - PLAYER SPRITE HEIGHT / 2 < this. y + this. height

)

Mutated (and buggy) code for “Contains” check in Covey.Town

https://app.covey.town
https://app.covey.town

Mutation Analysis Tests the Tests

- Automatically mutates SUT to create mutants, each a single change to the
code

* Runs each test on each mutant, until finding that a mutant is detected by a
test

» Can be a time-consuming process to run, but fully automated

Mutation Report Shows Undetected Mutants

e Mutants “detected” are bugs that are found

« Mutants “undetected” might be bugs, or could be equivalent to original
program (requires a human to tell)

‘9 (9 S \06
90 “0 “O X2 00 x9
8 @ 0P o o o 2 AT B
File | Directory i Mutation score A g T <0" <0"
m Allfiles 90.30 121 13 0 0 0 0 0 121 13 134
s ConversationArea.ts 76.92% 10 3 0 0 0 0 0 10 3 13
1s InteractableArea.ts 97.01 65 2 0 0 0 0 0 65 2 67
rs Town.ts 8500 34 6 0 0 0 0 0 34 6 40
s ViewingArea.ts 85.71 12 2 0 0 0 0 0 12 2 14

pubLic overlLaps(otherinteractable: lnteractableArea): boolean {@
const toRectPoints = ({ _x, _y, _width, _height }: InteractableArea) => ({ x1: _x - PLAYER_SPRI
const rectl = toRectPoints(this);
const rect2 = toRectPoints(otherInteractable);
const noOverlap = rectl.xl >= rectZ2.x20 000000000
Il rect2.x1 >=Wl >= rect2.y2 || rect2.yl >= rectl.y2;0 00000000
return !'noOverlap; e D

Use Mutation Analysis While Writing Tests

» When you feel “done” writing tests, run a mutation analysis

» Inspect undetected mutants, and try to strengthen tests to detect those

mutants

1= re

133
134
135
136
137

public overlaps(otherInteractable: InteractableArea): boolean {

const toRectPoints = ({ _x, _y, _width, _height }: InteractableArea) => ({ x1: _Xx

const rectl = toRectPoints(this);
const rectZ2 = toRectPoints(otherInteractable);
const noOverlap = rectl.xl >= rectZ2.x2e

‘v v e I i rvirnvtrvrar A e

const noOverlap = rectl.xl > rect2.x2

138 |l rect2.x1 >= rectl.x2 || rectl.yl >= rect2.y2 || rect2.yl >= rectl.y2; e
139 return !noOverlap; I S

140 }

141

Detailed mutation report for “overlaps” method - two mutants were not detected!

Undetected Mutants May Not Be Bugs

- Unfortunately, we can not automatically tell if an undetected mutant is a bug

or not

265
266
267
268
269

270
271
272

public initializeFromMap(map: ITiledMap) {
const objectLayer = map.layers.find(eachLayer => eachLayer.nam
if (lobjectLayer) {@®

i LV L b Al ALV oLV L LV LV LV ol

throw new Error({Unable to find objects layer in map); e

VAl ALV oW oLV LV LV LV LV oLV oV LV LV oLV oV LV ol W RV oV LV RV oV oLV ol oV oV ol RV ol oV LV RV oV LV LV RV oV LV RV RV LV L oLV oV LV LV RVl ALV kW oV LV LV L LV LV LV Y

¥

if ('objectLayer) {}

const viewingAreas = objectLayer.objects
.filter(eachObject => eachObject.type === 'ViewingArea')
.map(eachViewingAreaObject => ViewingArea.fromMapObject(eac

62
03
64
65

06
67
08
09

public static fromMapObject(mapObject: ITiledMapObject, broadca:
const { name, width, height } = mapObject;
1f (!width || 'height) {e

vV I T IAN S S SSSSSS

throw new Error("Malformed viewing area ${name}’); e

LA W ol oV Rl ol AVl ol v alV al W i W al kW R ki Al al il ki ol ki Y i i

throw new Error(*);

}

const rect: BoundingBox = { x: mapObject.x, y: mapObject.y,
return new ConversationArea({ 1d: name, occupantsByID: [] },

}

This mutant is equivalent to the original program: Even without
this check for undefined, an error is still thrown when the
undefined layer is dereferenced on the following line

This mutant is equivalent to the original program: Even though
the error message changed, the specification doesn’t indicate
what error message should be thrown.

Roadmap

» Thursday:
- Are mutants a valid substitute for real faults?
« Can automation help developers write assertions”?
* Next week:
» How to generate inputs?
* Project proposal brainstorming
» 2 Weeks:
* Very large case study: generating inputs, property testing
* Project proposal discussions
» 3 weeks: Continuous integration and test suite maintenance

What makes a bad test: Flaky lTests

Why do Google’s testing infrastructure team hate “Large” tests?

« How do we (reliably, repeatedly, cheaply) execute a test that:
 Changes some global variables?
 Changes the state of a database?
* Executes stock trades?

e Connects to remote servers?

Flaky Tests

An anti-pattern in testing

 Google: 16% of all automated tests are flaky
* Microsoft: 5% of Windows & Dynamics CRM tests are flaky
 Facebook: “Assume all tests are flaky”

 Most developers: flaky tests are a nuisance!

Flaky Tests

Test Order Dependencies

Read\ / Read
Write, Value "B”
Write, Value "A”

Shared

Flle

Value: B

“Efficient dependency detection for safe Java test acceleration”, Bell et al, FSE 2015

Flaky Tests

Test Order Dependencies

A tlaky test: outcome of Test 3 changed, but the code hasn’t changed!

Write, Value “A” Read, Expect Value "A”
File
Value: B

“Efficient dependency detection for safe Java test acceleration”, Bell et al, FSE 2015

Flaky Tests & Test Order Dependencies

Touch global variables or database?

Option 1 Option 2

let myVar = 5;
describe(' 'test with dependency', function() {
before(() => {
// runs once before the first test in this block TeSt 1
myVar = 10;
}) i

it("is a terrible test”, ()=>{
//do dots of sturt is a terrible test
myVar = 5;
//do lots of stuff
expect (myVar).to.be(5);

});

after(() => {
// runs once after the last test in this block Tes-t 2
myVar = 10;

})s
});

|solate each test in a new process

Setup, teardown methods .
(or container)

Fast, but “compliance appliance” Slow, but “non-compliance appliance”

“Unit Test Virtualization with VMVM,” Bell and Kaiser, ICSE 2014

Flaky Tests & Test Order Dependencies

System tests at scale

* Relying on engineers to develop and maintain reliable setup/teardown results
IN unreliable tests

* Without isolation, can’t run multiple tests concurrently

« Common solution: system tests run in entirely isolated environments

MySQL
Apache Tomcat
Ubuntu

Test (running in a newly provisioned VM)

Flaky Tests Overall

A problem we’re stuck with?

 Reduce the scope of a test: small tests aren’t flaky
 Remove timed waits, increase timeouts: reduce flaky failures?
* Make tests more understandable: can you tell if a failure is flaky or not?

* Mitigate with reruns, but this increases test cost

“Software Engineering at Google: Lessons Learned from Programming Over Time,” Wright, Winters and Manshreck, 2020 (O’Reilly)

