
© 2023 Jonathan Bell, CC BY-SA

Testing - Oracles and Adequacy
Advanced Software Engineering
Spring 2023

http://creativecommons.org/licenses/by-sa/4.0/

Big question: Quality Assurance
“Proving” that “the program” is “correct”

Verification Testing

Prove properties about a program
High assurance

Check behaviors of a program
Assurance?

What is a test?

• “System under test”

• Inputs

• Oracles

Each test might target a different scope

• Unit tests: SUT = a single method/class/object

• Integration tests: SUT = combinations of units, a subsystem

• System tests: SUT = whole system being developed

1 class of one program
running on a web

server

1 process running on a
web server

CIMan
ager.ts

UnitIntegration

1 web server in a
cluster of 100,000

1 Google product in
the entire Google

ecosystem

Good test suites have a strong foundation of unit tests

Google’s Ideal Software Testing Pyramid

Figures: “Software Engineering at Google: Lessons Learned from Programming Over Time,” Wright, Winters and Manshreck, 2020 (O’Reilly)

Software Testing Anti-Pattern: Ice Cream Cone Testing

What makes a good test suite?
Brainstorming

• (The pyramid, not the ice cream cone)

• If a test fails, easy to debug

• Fast/cheap to run - including in a regression context where we know what code changed

• Minimum false positives (test fails when there is not a fault)

• Coverage of common (all?) behaviors/code

• Scalable and maintainable over time - readable

• Tests should be isolated (no contamination of external sources)

• Test should be repeatable/consistent/deterministic wrt SUT

• Test suites are optimized to detect crucial issues sooner, provide actionable output

• Minimum false negatives (it finds all of the bugs)

• Designed and organized in a way where a newcomer can understand; traceable from tests to their purpose

• Mimic real-world inputs/outputs/edge cases

What makes a good test?

• Desirable properties of test suites:

• Find bugs

• Run automatically

• Are relatively cheap to run

• Desirable properties of individual tests:

• Understandable and debuggable

• No false alarms (not “flaky”)

What is “correct” behavior?
Test oracles

• Example-based: “For a given input, some assertions should be true”

• Properties: “All inputs in some class should satisfy some property”

• “It doesn’t crash”

• “Changing the input in some way should maintain the same output”

• Regression: “It provides the same output as it used to”

• Differential: “Two systems implementing the same spec should provide the same
output”

• Human oracle: “For a given user, they should be satisfied”

Example-Based Testing
AKA “traditional” testing?

• Interpret the specifications for the program, encode those specifications into
input/output/behavior examples

• Key problems: How to create the examples? How to encode them in an
automated test?

it('Removes the player from the list of occupants and emits an interactableUpdate event', () => {
 // Add another player so that we are not also testing what happens when the last player leaves
 const extraPlayer = new Player(nanoid(), mock<TownEmitter>());
 testArea.add(extraPlayer);
 testArea.remove(newPlayer);

 expect(testArea.occupantsByID).toEqual([extraPlayer.id]);
 const lastEmittedUpdate = getLastEmittedEvent(townEmitter, 'interactableUpdate');
 expect(lastEmittedUpdate).toEqual({ topic, id, occupantsByID: [extraPlayer.id] });
});

What is a “good” test suite?
Interpretation: Coverage of Input Space

• (Manually) enumerate possible “equivalence
classes” of inputs

• Ensure that each equivalence class is covered
by a test

• Pay extra attention to boundary cases

A B

If the program works for input A, it will probably work for input B

Property Testing

• Key idea: Instead of enumerating examples of inputs in an equivalence class,
specify the equivalence class, and allow the testing framework to generate
inputs

All possible inputs

Property Test

Example Test

Example Test Property Test

Property Testing: “Hello World” Example

• for all (a, b, c) strings

• the concatenation of a, b and c always contains b

• What other properties can we define for concatenation, and do you think that
they will be likely to reveal bugs?

Property Testing: No Crash
“Don't do bad things”

• Not a signal that good things eventually happen, but still shockingly effective
at finding defects

public void testBZip2CompressorStream(byte @Size(min=100, max=100)[] bytes){
 OutputStream o = new ByteArrayOutputStream();
 try {
 BZip2CompressorOutputStream bo = new BZip2CompressorOutputStream(o);
 bo.write(bytes);
 bo.finish();
 } catch (IOException e){
 Assume.assumeNoException(e);
 }
}

Property Testing: “Round Trip Conversion” Example

• Consider writing this kind of property test for any code that transforms an
input in a way that is also reversible

public void roundTripBzip2Test(byte @Size(min = 100, max = 100) [] bytes) throws IOException {
 ByteArrayOutputStream o = new ByteArrayOutputStream();
 BZip2CompressorOutputStream bo = new BZip2CompressorOutputStream(o);
 bo.write(bytes);
 bo.finish();
 byte[] compressedBytes = o.toByteArray();
 byte[] decompressedBytes = new byte[1024];
 new BZip2CompressorInputStream(new ByteArrayInputStream(compressedBytes))
 .read(decompressedBytes, 0, decompressedBytes.length);
 Assert.assertArrayEquals(bytes, decompressedBytes);

}

Property Testing: Self Driving Cars

• Problem: ML application learns
from traffic images, determines how
to steer car safely

• How do we exhaustively generate
inputs?

• Approach: apply image
transformations to known cases

“DeepTest: Automated Testing of Deep-Neural-Network-driven Autonomous Cars,” Tian et al, ICSE 2018

Property Testing: Graphics Drivers

• Problem: Graphics shader compilers are hard to
implement correctly. What is “correct?”

• One idea: Given a shader that creates an image,
transform the shader in a way that shouldn’t
cause a change in the generated image

Property Testing: Graphics Drivers

Regression Testing: “Snapshot” Testing

• The first time the test runs, it saves a “snapshot” of the rendered GUI

• Subsequent runs will fail if the snapshot changes
import renderer from 'react-test-renderer';
import Link from '../Link';

it('renders correctly', () => {
 const tree = renderer
 .create(<Link page="http://
www.facebook.com">Facebook</Link>)
 .toJSON();
 expect(tree).toMatchSnapshot();
});

Regression Testing: API Evolution

• Record the API requests and responses that clients make

• Test new versions of the API by identifying requests that result in different
responses (“breaking changes”)

Current version
of API

Next version of
API

Clients (created
by many third

parties)

Capture/Replay
Proxy for
Testing

Production traffic

Production traffic

Replay production
traffic for testing

Regression Testing: General Record/Replay

• Example: How to test an algorithmic trading system that consumes real time
streaming data?

Real-time stock
trade data

Algorithmic
trading system

Data streams
into SUT

Real-time news
data

(More real-time
data sources)

Trading
decisions come
out

Differential Testing: JVMs

• Problem: How to test JVMs?

• JVM is very well-specified, but there are
nonetheless corner cases & missing tests

• Context: There are many different JVM
implementations

• Solution: Compare behavior of each JVM on some
class files

• Each discrepancy is a bug in at least one
implementation (or the specification!)

“Coverage-Directed Differential Testing of JVM Implementations” Chen et al, PLDI ‘16

Generalized Oracles: Human Evaluation

• Some oracles might be too difficult to encode in an automated test

• This is an anti-pattern

Generalized Oracles: Human Evaluation
Usability Testing
• Observe real users interacting with your software - provide each user with a task,

monitor their progress towards completing that task

• Consider a diverse set of users that represent those who will use your software

• Validate problems (and fixes) that you identify in cognitive walkthroughs

• Example: usability testing for Microsoft Academic

ftp://ftp.cs.orst.edu/pub/burnett/chi19-GenderMag-findToFix.pdf

https://academic.microsoft.com
ftp://ftp.cs.orst.edu/pub/burnett/chi19-GenderMag-findToFix.pdf

Generalized Oracles: Human Evaluation
A/B Testing

• Ways to test new features for usability, popularity, performance without a
focus group

• Show 50% of your site visitors version A, 50% version B, collect metrics on
each, decide which is better

Generalized Oracles: Human Evaluation
A/B Testing: PlanOut from Facebook (“N=109 user study”)

• Used to test advertising strategies (and Facebook functionality)

• Segment audience and define KPIs, collect results

https://github.com/facebook/planout
https://www.slideshare.net/optimizely/opti-con-2014-automated-experimentation-at-scale

Generalized Oracles: Human Evaluation
A/B Testing: PlanOut from Facebook (“N=109 user study”)

https://github.com/facebook/planout
https://www.slideshare.net/optimizely/opti-con-2014-automated-experimentation-at-scale

Generalized Oracles: Human Evaluation
A/B Testing: PlanOut from Facebook (“N=109 user study”)

https://github.com/facebook/planout
https://www.slideshare.net/optimizely/opti-con-2014-automated-experimentation-at-scale

Generalized Oracles: Human Evaluation
A/B Testing: PlanOut from Facebook (“N=109 user study”)

https://github.com/facebook/planout
https://www.slideshare.net/optimizely/opti-con-2014-automated-experimentation-at-scale

What is a “good” test suite?
Interpretation: Coverage of Requirements

• Enumerate all inputs

• Enumerate all behaviors

• Check system wrt all inputs and
behaviors

• (Manually) create traceability links
between requirements and their tests

Coverage of Requirements at Google
“The Beyoncé Rule”

“Software Engineering at Google: Lessons Learned from Programming Over Time,” Wright, Winters and Manshreck, 2020 (O’Reilly)

What is a “good” test suite?
Interpretation: Coverage of statements or branches

• Intuition: if a test doesn’t execute a
statement or branch, it sure isn’t checking its
behavior

• Automatically determine which statements or
branches are covered by a test

function magic(x: number, y: number) {
 let z = 0;
 if (x !== 0) {
 z = x + 10;
 } else {
 z = 0;
 }
 if (y > 0) {
 return y / z;
 } else {
 return x;
 }
}
test(“100% branch coverage", () => {
 expect(magic(1, 22)).toBe(2); //T1
 expect(magic(0, -10)).toBe(0); //T2
});

✅ T1

✅ T2

✅ T1

✅ T2

What is a “good” test suite?
Interpretation: Other code-coverage metrics

• MCDC

• Like branch coverage, but requires every condition in each if statement is
taken and shown to affect decision outcomes independently

• Required for safety-critical avionics, automotive & space software

• Path coverage

• Has every possible route through the program been taken?

• General limitations?

Does Higher Branch Coverage Imply More Faults Found?

• “there is a moderate to very high correlation between
the effectiveness of a test suite and the number of
test methods it contains”

• “there is a moderate to high correlation between the
effectiveness and the coverage of a test suite when
the influence of suite size is ignored”

• “the correlation between coverage and effectiveness
drops when suite size is controlled for. After this
drop, the correlation typically ranges from low to
moderate, meaning it is not generally safe to assume
that effectiveness is correlated with coverage”

What makes a good test?
More than just coverage and oracles

• Tests should be hermetic: include all information and dependencies necessary to
run the test

• Tests should be clear: improves debugging later on

• Tests should be scoped as small as possible: faster and more reliable

• Tests should make calls against public APIs

“Software Engineering at Google: Lessons Learned from Programming Over Time,” Wright, Winters and Manshreck, 2020 (O’Reilly)

Good Tests are Not Flaky

• Flaky test failures are false alarms

• Tests that are hermetic defend against “test
order dependency” - failures due to tests
running in other orders

• Most common cause of flaky test failures:
“async wait” - tests that expect some
asynchronous action to occur within a
timeout

• Good tests avoid relying on timing
[Luo et al, FSE 2014 “An empirical analysis of flaky tests”]

Unordered Collecti
1%

Floati
3%

Random
3%

Time
4%

Network
9%

Resource Leak
10%

Concurrency
17%

Test Order Dependency
17%

Async Wait
37%

Flaky Test Example: Async/Wait

• Most common root cause of flakiness

• Difficult to avoid, but consider:

• Have more “small” tests that don’t require
concurrency

• Ensure sufficient resources available for running
tests

• Embed reasonable error detection to classify
test failures as likely to be “flaky” vs true
failures

Test fails!

Server startup
complete

Start server

Make request to
server

Wait 3 seconds
for server to start

Start Test

Too late!

What is a “good” test suite?
Interpretation: It has strong oracles

• Strong oracles should fail the test if the behavior is incorrect

• How to evaluate the strength of oracles?

• Strawman - “Seeded Faults”:

• Create N variations of the codebase, each with a single manually-written
defect

• Evaluate the number of defects detected by test suite

• Test suite is “good” if it finds all of the bugs you can think of

Mutation Analysis Tests the Tests
Idea: What if many (real) bugs could be represented by a single, one-line “mutation” to the program?

public contains(location: PlayerLocation): boolean {
 return (
 location.x + PLAYER_SPRITE_WIDTH / 2 > this._x &&
 location.x - PLAYER_SPRITE_WIDTH / 2 < this._x + this._width &&
 location.y + PLAYER_SPRITE_HEIGHT / 2 > this._y &&
 location.y - PLAYER_SPRITE_HEIGHT / 2 < this._y + this._height
);
}

Correct code for “Contains” check in Covey.Town

public contains(location: PlayerLocation): boolean {
 return (
 location.x + PLAYER_SPRITE_WIDTH / 2 < this._x &&
 location.x - PLAYER_SPRITE_WIDTH / 2 < this._x + this._width &&
 location.y + PLAYER_SPRITE_HEIGHT / 2 > this._y &&
 location.y - PLAYER_SPRITE_HEIGHT / 2 < this._y + this._height
);
}

Mutated (and buggy) code for “Contains” check in Covey.Town

https://app.covey.town
https://app.covey.town

Mutation Analysis Tests the Tests

• Automatically mutates SUT to create mutants, each a single change to the
code

• Runs each test on each mutant, until finding that a mutant is detected by a
test

• Can be a time-consuming process to run, but fully automated

Mutation Report Shows Undetected Mutants

• Mutants “detected” are bugs that are found

• Mutants “undetected” might be bugs, or could be equivalent to original

program (requires a human to tell)

Use Mutation Analysis While Writing Tests

• When you feel “done” writing tests, run a mutation analysis

• Inspect undetected mutants, and try to strengthen tests to detect those
mutants

Detailed mutation report for “overlaps” method - two mutants were not detected!

Undetected Mutants May Not Be Bugs

• Unfortunately, we can not automatically tell if an undetected mutant is a bug
or not

This mutant is equivalent to the original program: Even without
this check for undefined, an error is still thrown when the
undefined layer is dereferenced on the following line

This mutant is equivalent to the original program: Even though
the error message changed, the specification doesn’t indicate
what error message should be thrown.

Roadmap

• Thursday:

• Are mutants a valid substitute for real faults?

• Can automation help developers write assertions?

• Next week:

• How to generate inputs?

• Project proposal brainstorming

• 2 weeks:

• Very large case study: generating inputs, property testing

• Project proposal discussions

• 3 weeks: Continuous integration and test suite maintenance

What makes a bad test: Flaky Tests
Why do Google’s testing infrastructure team hate “Large” tests?

• How do we (reliably, repeatedly, cheaply) execute a test that:

• Changes some global variables?

• Changes the state of a database?

• Executes stock trades?

• Connects to remote servers?

Flaky Tests
An anti-pattern in testing

• Google: 16% of all automated tests are flaky

• Microsoft: 5% of Windows & Dynamics CRM tests are flaky

• Facebook: “Assume all tests are flaky”

• Most developers: flaky tests are a nuisance!

Flaky Tests
Test Order Dependencies

Test 1 Test 2 Test 3 Test 4Test 1 Test 2

Shared
File

Value: A
Write, Value “A”

Test 4

Read
Write, Value “B”

Value: B

Test 3

Read

“Efficient dependency detection for safe Java test acceleration”, Bell et al, FSE 2015

Flaky Tests
Test Order Dependencies

Test 1 Test 2 Test 3Test 4Test 1 Test 2 Test 3

Shared
File

Value: A
Write, Value “A”

Test 4

Write, Value “B”

Read, Expect Value “A”

Value: B

A flaky test: outcome of Test 3 changed, but the code hasn’t changed!

Read

“Efficient dependency detection for safe Java test acceleration”, Bell et al, FSE 2015

let myVar = 5;
describe('test with dependency', function() {
 before(() => {
 // runs once before the first test in this block
 myVar = 10;
 });

 it("is a terrible test", ()=>{
 //do lots of stuff
 myVar = 5;
 //do lots of stuff
 expect(myVar).to.be(5);
 });
 after(() => {
 // runs once after the last test in this block
 myVar = 10;
 });
});

Flaky Tests & Test Order Dependencies
Touch global variables or database?

Option 1 Option 2

Setup, teardown methods

Test 1

is a terrible test

Test 2

Isolate each test in a new process 
(or container)

Fast, but “compliance appliance” Slow, but “non-compliance appliance”

“Unit Test Virtualization with VMVM,” Bell and Kaiser, ICSE 2014

Flaky Tests & Test Order Dependencies
System tests at scale

• Relying on engineers to develop and maintain reliable setup/teardown results
in unreliable tests

• Without isolation, can’t run multiple tests concurrently

• Common solution: system tests run in entirely isolated environments

MySQL

Apache Tomcat

Ubuntu
Test (running in a newly provisioned VM)

Test

Flaky Tests Overall
A problem we’re stuck with?

• Reduce the scope of a test: small tests aren’t flaky

• Remove timed waits, increase timeouts: reduce flaky failures?

• Make tests more understandable: can you tell if a failure is flaky or not?

• Mitigate with reruns, but this increases test cost

“Software Engineering at Google: Lessons Learned from Programming Over Time,” Wright, Winters and Manshreck, 2020 (O’Reilly)

