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Studies in mice can help us make sense of
human disease, due to genetic orthologies
(overlap). In studying mice, we can
formulate and test hypotheses quickly, and
have experimental controls not afforded by
human subjects research.



We are just beginning to understand
the major role that genes and microbes
play in determining traits, including
behaviors -- in mice and in humans.
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Did you know? The gut provides ~95% of
humans’ total body serotonin, and 50%
of the body’s dopamine is stored in the

gut. That's why the gut can be known as

your “second brain”!






“How are genes and microbes
working together to influence
addiction-related traits?”
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“How do these microbes
work together to influence
addiction-related traits?”
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Paraclique

“Do the clustering methods
agree on which genes should be
in the same set?”
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k-partite conditional diff. co-expression
graph inference tree concordance
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The visualization is
just the tip of the
iceberg...

There’s a lot of
code underneath
that happens to
transform the data
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diff. co-expression
concordance

Parameters variably
have to be
supported by:

1) CLI args

2) .env

3) buttons

ANNOTATION_NAME
GTF_PATH_OR_URL
PARACLIQUE_PATH
PMCA_PATH
WGCNA_PATH

DEBUG

PORT

Parameters:

Parameter Default

df N/A
methods N/A
all_bool True
module_N 0
path_N 0
debug True

--annotation-
name

my_genome_features

data/Mus_musculus.GRCm38.102.gtf ~ --gtf-path

. --paraclique-
data/paraclique.txt path
data/pmca.txt --pmca-path

--wgcna-
dat Axt
ata/wgcna.tx Bath
TRUE --debug
8888 --port

Description

The input DataFrame containing gene information.

The names of the methods (column names) in the DataFrame.

If setto True, it applies the 'threshold_all' filter.

str

str

str

str

str

bool

int

Specifies the minimum number of genes required in each

module.

Indicates the minimum number of genes required in each gene

set union.

None

None

None

None

None

True

8888

If set to True, the function will print debug messages to help in

troubleshooting.
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The data visualization

community is not

prepared for this volume




DevOps for DataVis: A Survey and Provocation for Teaching
Deployment of Data Visualizations

Jane L. Adams &
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DevOps Keyword Groups

Fig. 1: Co-occurrence of tooling keyword groups and DevOps keyword groups within each syllabus from a survey of 65 data visual-
ization college courses. Values represent the total number of sylabi that contained at least one mention from each keyword group.
The most common DevOps keyword group, ‘wel', was mentioned in only 35.4% of syllabi.

Abstract—We present a provocalion towards teaching development operations (‘DevOps) and other m'raslruclure concepts in the
course of collegiate data visualization instruction. We survey 65 syllabi from 9 1
with an eye toward languages and platiorms used, as well as mentions of deployment related terms. Resuis convey significant vari-
abityin language and tooling used in currcula. We identiy a distinc lack of discussions around ‘DevOps for DataVis' scalfolding

concepts such as version control, packsge server i computing, and machine learning
data pipelines. We of adding to already dense curricula, and the expectation
that prior or concurrent classes should provide this computer science We propose a g ity effort to create

one free ‘course’ or ‘wiki'as a living reference on the ways these broader DevOps concepts relate directly to data visualization
specifically. A free copy of this paper and all supplemental materials are available at https: //os. io/bxaqz/.

Index Terms—Computing, i software engi ing, education.
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1 INTRODUCTION

There exists significant heterogeneity in the content of collegiate data ~ create problems. Students may complete a course feeling confident in
visualization curricula, both with regard to content and tooling. Some  their ability to code interactive visualizations, only to face confusing
of these differences can be explained by the programs in which these ~ and complex battles in deploying these visualizations for use in a
courses are housed, which may range from social science to machine ~ portfolio or in the context of building a dashboard for an employer.
learning— the inherent symptoms of a highly interdisciplinary field ~In these latter cases, it may have been beneficial for the studmn w
of study. Likewise, there is tremendous variability in the existing have related to

familiarity students have with the technologies and languages used in  infrastructure — development operations, or "DevOps" — during thenr
these data visualization courses. The result of this diversity can be ~ coursework.

productive, as courses can theoretically cater more narrowly to the
direct needs of students in a particular program; but they can also

This is a symptom also of the ‘gap’ between academic rescarch
and industry practice, as described by Velt et al. [20], investigated by
Parsons through interviews with practitioners [17], and discussed in
the VisGap workshops of 2021-2023 [5,7, 11]. As the proportion of
PhD graduates heading to industry surpassed academia for the first
time in 2020, and continues to rise, educational aims necessarily should
consider the needs of industry positions [13]. Concurrently, as visu-
alization researchers increasingly encourage one another to consider
the long term reusability of rescarch prototypes, the value of lessons in
these concepts extends beyond the classroom [11]. A search of “data

« Jane Adams is with Northeastern University. E-mail:
adams jan@northeastern.edu

« Conflict of Interest (COI) Disclosure: Jane Adams is on the steering
committee of alL.VIS, and was an organizer in 2021 and 2022.
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There is significant variability in the toolings
and/or languages used by each course,
as well as heterogeneity *within* course
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Research software
will increasingly run
intfo the problem that
startup infra has
known for years:

Horizontal Scaling

(Scaling out)

Vertical Scaling
(Scaling up)



It’s easy to
grow wide...

(horizontal scaling)

Lots of research code is
organized like this:

A small team (lab) or IC
(single author) creates a
codebase...

..If the [data, functions]
appear in multiple apps,

the [data, functions]
exist in multiple places




ThaV/erga / Tech / Reviews / Science / Entertainment / More 4+

Scientists rename human genes to stop
Microsoft Excel from misreading them as
dates

Studies found a fifth of
genetic data in papers
= was affected by Excel
errors

Lots of research code is
organized like this:

A small team (lab) or IC
(single author) creates a
codebase...

..If the [data, functions]
appear in multiple apps,

the [data, functions]
exist in multiple places




Research software
will increasingly run
into the problem that
startup infra has
known for years:

It’s easy to
grow wide...

(horizontal scaling)

..it’s hard
Compartmentalizing to grow tall
requires interdependence (verfical scaling)
(documentation,
communication,
efc efc efc...)
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Users expressed
data management
concerns due to
complexities of
institutional
embedding,
volume

Reduced | Data objects should only live in one location, with
Redundancy version control
Governance | Storage objects and visualization projects need

dynamic permissions scoping that align with
research release cycle

Cross-institutional

If visualizations rely on external authorities e.g.

syncing for nomenclature and ontologies, they should
update in sync with that authority. For example,

Ensembl gene IDs change with new research
Egress | Any tfransformation that can be made using the

UI should be exportable and workflow recorded.
Imagine a ‘graphical APT’

Multimodality

Web deployment but also paper publication,
scientific notebooks (Python, R)

Longevity

Long-term support via reduced technical debt,
unit tests, and platform support




There are systemic
challenges to
meeting these
objectives

Funding

There is limited funding either for person-power
or compute resources to set up workflows

Time | ‘Publish or perish’ and grant obligations mean
limited time for processes like unit testing
Siloed | When teams are organized by biological research

ownership

question, there is redundancy due to reduced
communication

Intellectual
property

Open sourcing code can be challenging when
data has already been open sourced and
analysis is the primary novel contribution

Comfort

Don’t tell R users they have to learn Python...
..especially not statisticians

Mental model

Modularity of code elements is incongruous with
organizing projects into distinct compartments
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