Lilac: A Modal Separation Logic for Conditional Probability

John Li
li.john@northeastern.edu

Amal Ahmed
amal@ccs.neu.edu

Steven Holtzen
s.holtzen@northeastern.edu

Northeastern University Khoury College of Computer Sciences

https://johnm.li/lilac.pdf

How to reason about complex probabilistic systems?

How to reason about complex probabilistic systems?

How to reason about complex probabilistic systems?

How to reason about complex probabilistic systems?

How to reason about complex probabilistic systems?

Is my car safe?

How to reason about complex probabilistic systems?

Is my car safe?

Is this decision fair?

How to reason about complex probabilistic systems?

Is my car safe?

Is this decision fair?

Is my result significant?

How to reason about complex probabilistic systems?

- Reasoning should be modular:

How to reason about complex probabilistic systems?

- Reasoning should be modular:

How to reason about complex probabilistic systems?

- Reasoning should be modular:

Modularity comes from probabilistic independence

- Independence arises frequently and naturally:

Modularity comes from probabilistic independence

- Independence arises frequently and naturally:

$$
\text { weights }=n p . r a n d o m \cdot \operatorname{rand}(1000)
$$

Modularity comes from probabilistic independence

- Independence arises frequently and naturally:

weights $=n p . r a n d o m . r a n d(1000)$
weights[0], ..., weights[999] ~ Unif[0,1] mutually independent

Modularity comes from probabilistic independence

- Independence arises frequently and naturally:

$$
\text { result }=n p . \operatorname{mean}(d a t a)
$$

Modularity comes from probabilistic independence

- Independence arises frequently and naturally:
if each data[i] is an independent estimate of $v \ldots$
result = np. mean(data)
...then result is a more accurate estimate of v

Modularity comes from probabilistic independence

- Independence arises frequently and naturally.
- Idea: capture independence using separation logic

Ordinary separation logic is about disjointness

$$
\begin{aligned}
& x=\text { new } 0 \\
& y=\text { new } 1
\end{aligned}
$$

Ordinary separation logic is about disjointness

$$
\begin{gathered}
x=\text { new } 0 \\
y=\text { new } 1 ; \\
(x \mapsto 0) * \quad(y \mapsto 1)
\end{gathered}
$$

Ordinary separation logic is about disjointness

$$
\begin{gathered}
x=\text { new } 0 \\
y=\text { new } 1 ; \\
(x \mapsto 0) *(y \mapsto 1)
\end{gathered}
$$

x and y point to disjoint heap locations

Ordinary separation logic is about disjointness

$$
\frac{\{P\} e\{x \cdot Q(x)\}}{\left\{P^{*} F\right\} e\left\{x \cdot Q(x)^{*} F\right\}} \text { (Frame) }
$$

Ordinary separation logic is about disjointness

When verifying $e \ldots$

$$
\frac{\{P\} e\{x \cdot Q(x)\}}{\left\{P^{*} F\right\} e\left\{x \cdot Q(x)^{*} F\right\}} \text { (Frame) }
$$

Ordinary separation logic is about disjointness

When verifying $e_{\text {... ...I can ignore disjoint subheaps } F}$

$$
\frac{\{P\} e\{x \cdot Q(x)\}}{\left\{P^{*} F\right\} e\left\{x \cdot Q(x)^{*} F\right\}}(\text { Frame })
$$

Ordinary separation logic is about disjointness

When verifying e... ...I can ignore disjoint subheaps F

- This has enabled modular heap-based reasoning at scale. ${ }^{1}$

Lilac's separation is about independence

$$
\begin{aligned}
& X \leftarrow \text { flip } 1 / 2 \\
& Y \leftarrow \text { flip } 1 / 2
\end{aligned}
$$

Lilac's separation is about independence

$$
\begin{gathered}
X \leftarrow f \operatorname{lip} 1 / 2 \\
Y \leftarrow f \operatorname{lip} 1 / 2 \\
X \sim \operatorname{Ber}(1 / 2) \quad * \quad Y \sim \operatorname{Ber}(1 / 2)
\end{gathered}
$$

Lilac's separation is about independence

$$
\begin{gathered}
X \leftarrow \text { flip } 1 / 2 ; \\
Y \leftarrow \text { flip } 1 / 2 ; \\
X \sim \operatorname{Ber}(1 / 2) \quad * \quad Y \sim \operatorname{Ber}(1 / 2) \\
\uparrow
\end{gathered}
$$

X and Y are independent random variables

New in Lilac

New in Lilac: a simple frame rule

New in Lilac: a simple frame rule

$$
\frac{\{P\} e\{x \cdot Q(x)\}}{\left\{P^{*} F\right\} e\left\{x \cdot Q(x)^{*} F\right\}} \text { (Frame) }
$$

New in Lilac: a simple frame rule

$$
\frac{\{P\} e\{x \cdot Q(x)\}}{\left\{P^{*} F\right\} e\left\{x \cdot Q(x)^{*} F\right\}} \text { (Frame) }
$$

- Just like in ordinary separation logic!

New in Lilac: separation is independence

New in Lilac: separation is independence

$$
\text { weights }=n p . r a n d o m . r a n d(1000)
$$

weights[0], ..., weights[999] ~ Unif[0,1] mutually independent

New in Lilac: separation is independence

$$
\begin{gathered}
\text { weights }=\mathrm{np} . \text { random.rand(1000) } \\
(\text { weights }[0] \sim \operatorname{Unif}[0,1]) * \cdots *(\text { weights }[999] \sim \operatorname{Unif}[0,1])
\end{gathered}
$$

New in Lilac: separation is independence

New in Lilac: separation is independence

$$
\text { weights }=\text { np.random.rand(1000) }
$$

(weights[0] ~Unif[0,1]) * \cdots * (weights[999] ~ Unif[0,1])

Completely captures independence (Lemma 2.5)

New in Lilac: quantitative reasoning

New in Lilac: quantitative reasoning

if each data[i] is an independent estimate of $v \ldots$

$$
\text { result }=n p \cdot \operatorname{mean}(d a t a)
$$

...then result is a more accurate estimate of v

New in Lilac: quantitative reasoning

if each data[i] independent
and for all i we have $\mathbb{E}[$ data[i] $]=v$ and $\operatorname{Var}(\operatorname{data[i]}) \leq \varepsilon \ldots$
result = np. mean(data)
...then result is a more accurate estimate of v

New in Lilac: quantitative reasoning

if each data[i] independent and for all i we have $\mathbb{E}[$ data[i] $]=v$ and $\operatorname{Var}(\operatorname{data}[i]) \leq \varepsilon \ldots$
result = np. mean(data)
\ldots..then $\mathbb{E}[$ result $]=v$ and $\operatorname{Var}($ result $) \leq \frac{\varepsilon}{\mid \text { data } \mid}$

New in Lilac: quantitative reasoning

$$
\begin{gathered}
\text { if } \quad(\mathbb{E}[\text { data }[i]]=v \text { and } \operatorname{Var}(\text { data }[i]) \leq \varepsilon) \ldots \\
0 \leq i<\mid \text { data } \mid \\
\text { result }=\mathrm{np} \cdot \operatorname{mean}(\text { data }) \\
\text {...then } \mathbb{E}[\text { result }]=v \text { and } \operatorname{Var}(\text { result }) \leq \frac{\varepsilon}{\mid \text { data } \mid}
\end{gathered}
$$

New in Lilac: good interop with normal math

$$
\begin{aligned}
& \text { if } \underset{0 \leq i<\mid \text { data } \mid}{ }(\mathbb{E}[\text { data[i }]]=v \text { and } \operatorname{Var}(\text { data }[\mathrm{i}]) \leq \varepsilon) \ldots \\
& \text { result }=\mathrm{np} \cdot \operatorname{mean}(\text { data }) \\
& \text {...then } \mathbb{E}[\text { result }]=v \text { and } \operatorname{Var}(\text { result }) \leq \frac{\varepsilon}{\mid \text { data } \mid}
\end{aligned}
$$

New in Lilac: good interop with normal math

$$
\begin{aligned}
& \qquad 0 \leq i<\mid \text { data } \mid \\
& \text { result }=\text { np } \cdot \text { mean }(\text { data }) \\
& \text {...then } \mathbb{E} \text { result }=v \text { and } \operatorname{Var}(\text { result }) \leq \frac{\varepsilon}{\mid \text { data } \mid} \\
& \text { An ordinary random variable }
\end{aligned}
$$

New in Lilac: good interop with normal math

$$
\begin{aligned}
& 0 \leq i<\mid \text { data } \mid \\
& \text { result }=\mathrm{np} \cdot \operatorname{mean}(\text { data }) \\
& \ldots \text { the } \mathbb{E}[r \operatorname{esult}]=v \text { an } \operatorname{Var}(\operatorname{result}) \leq \frac{\varepsilon}{\mid \text { data } \mid} \\
& \text { Ordinary expectation and variance }
\end{aligned}
$$

New in Lilac: good interop with normal math

$$
\begin{aligned}
& \text { if } \underset{0 \leq i<\mid \text { data } \mid}{ }(\mathbb{E}[\text { data[i }]]=v \text { and } \operatorname{Var}(\text { data }[\mathrm{i}]) \leq \varepsilon) \ldots \\
& \text { result }=\mathrm{np} \cdot \operatorname{mean}(\text { data }) \\
& \text {...then } \mathbb{E}[\text { result }]=v \text { and } \operatorname{Var}(\text { result }) \leq \frac{\varepsilon}{\mid \text { data } \mid}
\end{aligned}
$$

\Longrightarrow textbook proofs remain textbook

Key idea

Key idea

- Probability spaces are the heaps of probability theory.

Probability spaces as heaps

Probability spaces as heaps

$X \sim \operatorname{Ber}(1 / 2)$

Probability spaces as heaps

$$
X \sim \operatorname{Ber}(1 / 2) \text { means } \operatorname{Pr}[X=\text { true }]=\operatorname{Pr}[X=\text { false }]=1 / 2
$$

Probability spaces as heaps

$$
X \sim \operatorname{Ber}(1 / 2) \text { means } \operatorname{Pr}[X=\text { true }]=\operatorname{Pr}[X=\text { false }]=1 / 2
$$

This hides a lot of machinery...

Probability spaces as heaps

$X \sim \operatorname{Ber}(1 / 2)$ really means...

Probability spaces as heaps

$X \sim \operatorname{Ber}(1 / 2)$ really means...

Probability spaces as heaps

$X \sim \operatorname{Ber}(1 / 2)$ really means...
$X: \Omega \rightarrow$ bool

Probability spaces as heaps

$X \sim \operatorname{Ber}(1 / 2)$ really means...
$X: \Omega \rightarrow$ bool

Probability spaces as heaps

$X \sim \operatorname{Ber}(1 / 2)$ really means...
$X: \Omega \rightarrow$ bool

Probability spaces as heaps

$X \sim \operatorname{Ber}(1 / 2)$ really means...
$X: \Omega \rightarrow$ bool
$\mu:$ events $\rightarrow[0,1]$

Probability spaces as heaps

$X \sim \operatorname{Ber}(1 / 2)$ really means...
$X: \Omega \rightarrow$ bool
$\mu:$ events $\rightarrow[0,1]$

Probability spaces as heaps

$X \sim \operatorname{Ber}(1 / 2)$ really means...
$X: \Omega \rightarrow$ bool
$\mu:$ events $\rightarrow[0,1]$

Probability spaces as heaps

$X \sim \operatorname{Ber}(1 / 2)$ really means...
$X: \Omega \rightarrow$ bool

\in events

Probability spaces as heaps

$X \sim \operatorname{Ber}(1 / 2)$ really means...

events

Ω

Probability spaces as heaps

$X \sim \operatorname{Ber}(1 / 2)$ really means...
events

Only accessed indirectly through X
Ω

Probability spaces as heaps

$X \sim \operatorname{Ber}(1 / 2)$ really means...

Only accessed indirectly through X
Together, form a probability space
Ω

Probability spaces as heaps

Probability theory

Probability spaces as heaps

Probability theory
 \simeq
 Mutable references

Key idea

- Probability spaces are the heaps of probability theory.

Key idea

- Probability spaces are the heaps of probability theory.

$$
\begin{aligned}
& x=\text { new } 0 \\
& y=\text { new } 1
\end{aligned}
$$

Key idea

- Probability spaces are the heaps of probability theory.

$$
y=\text { new } 1 ;
$$

Key idea

- Probability spaces are the heaps of probability theory.

$$
\begin{array}{ccc}
& \ell_{x} \\
\boldsymbol{x}=\text { new } 0 ; & 0 & \\
& \ell_{x} & \ell_{y} \\
y=\text { new } 1 ; & 0 & 1
\end{array}
$$

Key idea

- Probability spaces are the heaps of probability theory.

Key idea

- Probability spaces are the heaps of probability theory.

$$
X \leftarrow \text { flip } 1 / 2
$$

$$
Y \leftarrow \text { flip } 1 / 2
$$

Key idea

- Probability spaces are the heaps of probability theory.

$$
X \leftarrow \text { flip } 1 / 2
$$

$$
Y \leftarrow \text { flip } 1 / 2
$$

Key idea

- Probability spaces are the heaps of probability theory.

$$
\begin{aligned}
& X \leftarrow \text { flip } 1 / 2 ; \\
& Y \leftarrow \text { flip } 1 / 2
\end{aligned}
$$

Key idea

- Probability spaces are the heaps of probability theory.

$$
\begin{aligned}
& X \leftarrow \text { flip } 1 / 2 ; \\
& Y \leftarrow \text { flip } 1 / 2
\end{aligned}
$$

Key idea

- Probability spaces are the heaps of probability theory.

Key idea

- Probability spaces are the heaps of probability theory.
- Separating conjunction decomposes probability spaces:

Key idea

- Probability spaces are the heaps of probability theory.
- Separating conjunction decomposes probability spaces:

Key idea

- Probability spaces are the heaps of probability theory.
- Separating conjunction decomposes probability spaces:

Key idea

- Probability spaces are the heaps of probability theory.
- Separating conjunction decomposes probability spaces:

- \Longrightarrow frame rule, star as independence, good interop, ...

Lilac: a modal separation logic for conditional probability

Lilac: a modal separation logic for conditional probability

- Conditioning as a modality:

Lilac: a modal separation logic for conditional probability

- Conditioning as a modality:

$$
\underset{x \leftarrow X}{\mathbf{C}} P
$$

Lilac: a modal separation logic for conditional probability

- Conditioning as a modality:

$$
\underset{x \leftarrow X}{\mathbf{C}} P
$$

P holds conditional on $X=x$ for all x

Lilac: a modal separation logic for conditional probability

- Conditioning as a modality:

$$
X \sim \operatorname{Ber}(1 / 2) \quad * \quad Y \sim \operatorname{Ber}(1 / 2)
$$

Lilac: a modal separation logic for conditional probability

- Conditioning as a modality:

$$
X \text { and } Y \text { are independent }
$$

Lilac: a modal separation logic for conditional probability

- Conditioning as a modality:

Lilac: a modal separation logic for conditional probability

- Conditioning as a modality:

$$
\underset{z \leftarrow Z}{C}(X \sim \operatorname{Ber}(1 / 2) \quad * \quad Y \sim \operatorname{Ber}(1 / 2))
$$

Lilac: a modal separation logic for conditional probability

- Conditioning as a modality:
X and Y are conditionally independent given Z

$$
\underset{z \leftarrow Z}{ } \mathrm{C}(X \sim \operatorname{Ber}(1 / 2) \stackrel{\downarrow}{*} Y \sim \operatorname{Ber}(1 / 2))
$$

Lilac: a modal separation logic for conditional probability

- Conditioning as a modality:

$$
X \text { and } Y \text { are conditionally independent given } Z
$$

X and Y have conditional distribution $\operatorname{Ber}(1 / 2)$ given Z

Lilac: a modal separation logic for conditional probability

- Conditioning as a modality:

$$
\operatorname{Pr}[E]=1 / 2 \quad E \text { has probability } 1 / 2
$$

$\mathbf{E}[X]=0 \quad X$ has expectation 0

Lilac: a modal separation logic for conditional probability

- Conditioning as a modality:

$$
\underset{x \leftarrow X}{\mathbf{C}}(\operatorname{Pr}[E]=1 / 2)
$$

E has probability $1 / 2$ given $X=x$
$\mathbf{E}[X]=0 \quad X$ has expectation 0

Lilac: a modal separation logic for conditional probability

- Conditioning as a modality:

$$
\begin{aligned}
& \mathrm{C}_{x \leftarrow X}(\operatorname{Pr}[E]=1 / 2) \quad E \text { has probability } 1 / 2 \text { given } X=x \\
& \mathbf{C}_{y \leftarrow Y}(\mathbf{E}[X]=0) \quad X \text { has conditional expectation } 0
\end{aligned}
$$

Lilac: a modal separation logic for conditional probability

- Conditioning as a modality
- Laws express intuitive facts and standard theorems:

Lilac: a modal separation logic for conditional probability

- Conditioning as a modality
- Laws express intuitive facts and standard theorems:

$$
\begin{aligned}
& \text { C-TOTAL-EXPECTATION } \\
& \underset{x \leftarrow X}{\mathbb{C}}(\mathbb{E}[E]=e) \wedge \mathbb{E}[e[X / x]]=v \vdash \mathbb{E}[E]=v
\end{aligned}
$$

We used Lilac to verify

- Examples from prior work (cryptographic protocols)
- A tricky weighted sampling algorithm exercising
- Continuous random variables
- Quantitative reasoning
- Separation as independence
- Conditioning modality

Also in the paper

- Conditioning modality
- Ownership is measurability
- Worked examples
- Almost-sure equality $X={ }_{\text {a.s. }} Y$

Thanks!

https://johnm.li/lilac.pdf
li.john@northeastern.edu

