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Modularity comes from probabilistic independence

* Independence arises frequently and naturally.
* |dea: capture independence using separation logic
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x =new0;
y = new 1;

(x=0) = (y=1)

T

X and y point to disjoint heap locations
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Ordinary separation logic is about disjointness

When verifying e... ... can ignore disjoint subheaps

\ (P} e {x.Q<x>}/

—— (Frame)
P F} e {x.0x) " F}

* This has enabled modular heap-based reasoning at scale.!

1C. Calcagno and D. Distefano. Infer. An automatic program verifier for memory safety of C programs. NFM 2011. 8
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Lilac's separation Is about independence

X « flip 1/2;
Y « flip 1/2;
X ~Ber(1/2) = Y ~ Ber(1/2)

T

X and Y are independent random variables
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1Pyeix.0);

P*Fpex.Q)*F

* Just like In ordinary separation logic!

(Frame)

11



New In Lilac: separation is independence

12



New In Lilac: separation is independence

weights = np.random.rand(1000)
weights[0],...,weights[999] ~ Unif[0,1] mutually independent

13



New In Lilac: separation is independence

weights = np.random.rand(1000)
(weights[0] ~ Unmif[0,1]) * --- * (weights[999] ~ Umt[0,1])

14



New In Lilac: separation is independence

weights = np.random.rand(1000)
(weights[0] ~ Unmif[0,1]) * --- * (weights[999] ~ Umt[0,1])

T e

Inexpressible in prior work
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New In Lilac: separation is independence

weights = np.random.rand(1000)
(weights[0] ~ Unmif[0,1]) * --- * (weights[999] ~ Umt[0,1])

T

Completely captures independence (Lemma 2.5)
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New In Lilac: good interop with normal math

f

0<i<|data]

result = np.mean(data)

5
...then = y and Var(result) <
@ ‘ da,ta,\

An ordinary random variable

>I< ( -[datal[i]] = v and Var(datal[i]) < g)
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New In Lilac: good interop with normal math

f

0<i<|data]

result = np.mean(data)

£
...the@esult] =) anesult) <
| data |

Ordinary expectation and variance

>I< ( -[datal[i]] = v and Var(datal[i]) < g)
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New In Lilac: good interop with normal math

f

0<i<|data]

result = np.mean(data)

...then E[result] = v and Var(result) <

|data]

—> textbook proofs remain textbook

>I< ( -[datal[i]] = v and Var(datal[i]) < g)
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* Probability spaces are the heaps of probability theory.
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This hides a lot of machinery...
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Probability spaces as heaps

X ~ Ber(1/2) really means...

u . events — |0,1]

X : Q — bool
O . O € events (@) = 1/2
m = 1/2
b()()l E cvents 12 (U)
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Probability spaces as heaps

X ~ Ber(1/2) really means...

X :Q — bool [O’ L]

. @ _— @g@) oy

ool E events //t(U) = 1/2
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Probability spaces as heaps

X ~ Ber(1/2) really means...
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Probability spaces as heaps

X ~ Ber(1/2) really means...

Only accessed indirectly through X @

@
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Probability spaces as heaps

X ~ Ber(1/2) really means...

Only accessed indirectly through X

Together, form a probabillity space

@

)
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Probability spaces as heaps

Probability theory
X

a
\_/

(€2, events, i)
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Probability spaces as heaps

Probability theory ~
X

a
\_/

(€2, events, i)
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Key idea

* Probability spaces are the heaps of probability theory.

X Independent combination
X « flip 1/2; . ("disjoint union for spaces”)

X /
Y « flip 1/2; .

Y
@
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Key idea

* Probability spaces are the heaps of probability theory.

e Separating conjunction decomposes probability spaces:

.I=P
- = PO
° 0 <

« —> frame rule, star as independence, good interop, ...
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* Conditioning as a modality:

Cr

x «— X

P holds conditional on X = x for all x
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Lilac: a modal separation logic for conditional probability

* Conditioning as a modality:

X and Y are conditionally independent given Z

C (er Ber(1/2) * Y ~ Ber(1/2) )

o N/

X and Y have conditional distribution Ber(1/2) given Z

35



Lilac: a modal separation logic for conditional probability

* Conditioning as a modality:

Pr[E]l = 1/2 E has probability 1/2

E[X] =0 X has expectation 0
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Lilac: a modal separation logic for conditional probability

* Conditioning as a modality:

C (Pr[E] = 1/2) E has probability 1/2 given X = x

x «— X

C (E[X] = O) X has conditional expectation 0
y <Y

33



Lilac: a modal separation logic for conditional probability

e Conditioning as a modality
e Laws express intuitive facts and standard theorems:

39



Lilac: a modal separation logic for conditional probability

e Conditioning as a modality
e Laws express intuitive facts and standard theorems:

C-TOTAL-EXPECTATION
C (]E[E] = e) A Ele|lX/x||=0 F E|E| =0

x—X
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We used Lilac to verify

 Examples from prior work (cryptographic protocols)
* A tricky weighted sampling algorithm exercising

* Continuous random variables

e Quantitative reasoning

» Separation as independence

* Conditioning modality
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Also In the paper

* Conditioning modality

* Ownership is measurability

* Worked examples

» Almost-sure equality X =,

S.

Y

4



Thanks!

Probability theory
X

a
_

(€2, events, u)

O 40
- https://johnm.li/lilac.pdf
[=]

N/

Mutable references
C

([ [

h

i.john@northeastern.edu

42



