
Lilac: A Modal Separation Logic
for Conditional Probability

https://johnm.li/lilac.pdf

John Li

li.john@northeastern.edu

Amal Ahmed

amal@ccs.neu.edu

Steven Holtzen

s.holtzen@northeastern.edu

1

How to reason about complex probabilistic systems?

2

How to reason about complex probabilistic systems?

2

How to reason about complex probabilistic systems?

2

How to reason about complex probabilistic systems?

2

How to reason about complex probabilistic systems?

2

Is my car safe?

How to reason about complex probabilistic systems?

2

Is my car safe? Is this decision fair?

How to reason about complex probabilistic systems?

2

Is my car safe? Is this decision fair? Is my result significant?

• Reasoning should be modular:

How to reason about complex probabilistic systems?

3

• Reasoning should be modular:

How to reason about complex probabilistic systems?

3

✓ ✓

• Reasoning should be modular:

How to reason about complex probabilistic systems?

3

✓ ✓

✓

Modularity comes from probabilistic independence

4

𝚛𝚎𝚜𝚞𝚕𝚝 = 𝚏(. . .) + 𝚐(. . .)
...then Var(𝚛𝚎𝚜𝚞𝚕𝚝) = Var(𝚏(. . .)) + Var(𝚐(. . .))

if the outputs of 𝚏 and 𝚐 are independent...

• Independence arises frequently and naturally:

Modularity comes from probabilistic independence

4

𝚠𝚎𝚒𝚐𝚑𝚝𝚜 = 𝚗𝚙 . 𝚛𝚊𝚗𝚍𝚘𝚖 . 𝚛𝚊𝚗𝚍(𝟷𝟶𝟶𝟶)

𝚛𝚎𝚜𝚞𝚕𝚝 = 𝚏(. . .) + 𝚐(. . .)
...then Var(𝚛𝚎𝚜𝚞𝚕𝚝) = Var(𝚏(. . .)) + Var(𝚐(. . .))

if the outputs of 𝚏 and 𝚐 are independent...

• Independence arises frequently and naturally:

Modularity comes from probabilistic independence

4

𝚠𝚎𝚒𝚐𝚑𝚝𝚜 = 𝚗𝚙 . 𝚛𝚊𝚗𝚍𝚘𝚖 . 𝚛𝚊𝚗𝚍(𝟷𝟶𝟶𝟶)

𝚠𝚎𝚒𝚐𝚑𝚝𝚜[𝟶], …, 𝚠𝚎𝚒𝚐𝚑𝚝𝚜[𝟿𝟿𝟿] ∼ Unif[0,1] mutually independent

𝚛𝚎𝚜𝚞𝚕𝚝 = 𝚏(. . .) + 𝚐(. . .)
...then Var(𝚛𝚎𝚜𝚞𝚕𝚝) = Var(𝚏(. . .)) + Var(𝚐(. . .))

if the outputs of 𝚏 and 𝚐 are independent...

• Independence arises frequently and naturally:

Modularity comes from probabilistic independence

5

𝚛𝚎𝚜𝚞𝚕𝚝 = 𝚗𝚙 . 𝚖𝚎𝚊𝚗(𝚍𝚊𝚝𝚊)

𝚛𝚎𝚜𝚞𝚕𝚝 = 𝚏(. . .) + 𝚐(. . .)
...then Var(𝚛𝚎𝚜𝚞𝚕𝚝) = Var(𝚏(. . .)) + Var(𝚐(. . .))

if the outputs of 𝚏 and 𝚐 are independent...

• Independence arises frequently and naturally:

Modularity comes from probabilistic independence

5

𝚛𝚎𝚜𝚞𝚕𝚝 = 𝚗𝚙 . 𝚖𝚎𝚊𝚗(𝚍𝚊𝚝𝚊)
...then 𝚛𝚎𝚜𝚞𝚕𝚝 is a more accurate estimate of v

if each 𝚍𝚊𝚝𝚊[𝚒] is an independent estimate of v...

𝚛𝚎𝚜𝚞𝚕𝚝 = 𝚏(. . .) + 𝚐(. . .)
...then Var(𝚛𝚎𝚜𝚞𝚕𝚝) = Var(𝚏(. . .)) + Var(𝚐(. . .))

if the outputs of 𝚏 and 𝚐 are independent...

• Independence arises frequently and naturally:

Modularity comes from probabilistic independence

6

𝚛𝚎𝚜𝚞𝚕𝚝 = 𝚏(. . .) + 𝚐(. . .)
...then Var(𝚛𝚎𝚜𝚞𝚕𝚝) = Var(𝚏(. . .)) + Var(𝚐(. . .))

if the outputs of 𝚏 and 𝚐 are independent...

• Independence arises frequently and naturally.

• Idea: capture independence using separation logic

Ordinary separation logic is about disjointness

7

Ordinary separation logic is about disjointness

7

(x ↦ 0) (y ↦ 1)*

Ordinary separation logic is about disjointness

7

(x ↦ 0) (y ↦ 1)*

 and point to disjoint heap locationsx y

Ordinary separation logic is about disjointness

8

{P} e {x . Q(x)}
{P * F} e {x . Q(x) * F}

(Frame)

Ordinary separation logic is about disjointness

8

{P} e {x . Q(x)}
{P * F} e {x . Q(x) * F}

(Frame)

When verifying ...e

Ordinary separation logic is about disjointness

8

{P} e {x . Q(x)}
{P * F} e {x . Q(x) * F}

(Frame)

When verifying ...e ...I can ignore disjoint subheaps F

Ordinary separation logic is about disjointness

8

{P} e {x . Q(x)}
{P * F} e {x . Q(x) * F}

(Frame)

• This has enabled modular heap-based reasoning at scale.1

1C. Calcagno and D. Distefano. Infer: An automatic program verifier for memory safety of C programs. NFM 2011.

When verifying ...e ...I can ignore disjoint subheaps F

Lilac's separation is about independence

9

Lilac's separation is about independence

9

X ∼ Ber(1/2) Y ∼ Ber(1/2)*

Lilac's separation is about independence

9

X ∼ Ber(1/2) Y ∼ Ber(1/2)*

 and are independent random variablesX Y

New in Lilac

10

New in Lilac: a simple frame rule

11

New in Lilac: a simple frame rule

11

{P} e {x . Q(x)}
{P * F} e {x . Q(x) * F}

(Frame)

• Just like in ordinary separation logic!

New in Lilac: a simple frame rule

11

{P} e {x . Q(x)}
{P * F} e {x . Q(x) * F}

(Frame)

New in Lilac: separation is independence

12

New in Lilac: separation is independence

13

𝚠𝚎𝚒𝚐𝚑𝚝𝚜 = 𝚗𝚙 . 𝚛𝚊𝚗𝚍𝚘𝚖 . 𝚛𝚊𝚗𝚍(𝟷𝟶𝟶𝟶)

𝚠𝚎𝚒𝚐𝚑𝚝𝚜[𝟶], …, 𝚠𝚎𝚒𝚐𝚑𝚝𝚜[𝟿𝟿𝟿] ∼ Unif[0,1] mutually independent

* (𝚠𝚎𝚒𝚐𝚑𝚝𝚜[𝟿𝟿𝟿] ∼ Unif[0,1])…(𝚠𝚎𝚒𝚐𝚑𝚝𝚜[𝟶] ∼ Unif[0,1]) *

New in Lilac: separation is independence

14

𝚠𝚎𝚒𝚐𝚑𝚝𝚜 = 𝚗𝚙 . 𝚛𝚊𝚗𝚍𝚘𝚖 . 𝚛𝚊𝚗𝚍(𝟷𝟶𝟶𝟶)

* (𝚠𝚎𝚒𝚐𝚑𝚝𝚜[𝟿𝟿𝟿] ∼ Unif[0,1])…(𝚠𝚎𝚒𝚐𝚑𝚝𝚜[𝟶] ∼ Unif[0,1]) *

New in Lilac: separation is independence

15

𝚠𝚎𝚒𝚐𝚑𝚝𝚜 = 𝚗𝚙 . 𝚛𝚊𝚗𝚍𝚘𝚖 . 𝚛𝚊𝚗𝚍(𝟷𝟶𝟶𝟶)

Inexpressible in prior work

Completely captures independence (Lemma 2.5)

* (𝚠𝚎𝚒𝚐𝚑𝚝𝚜[𝟿𝟿𝟿] ∼ Unif[0,1])…(𝚠𝚎𝚒𝚐𝚑𝚝𝚜[𝟶] ∼ Unif[0,1]) *

New in Lilac: separation is independence

16

𝚠𝚎𝚒𝚐𝚑𝚝𝚜 = 𝚗𝚙 . 𝚛𝚊𝚗𝚍𝚘𝚖 . 𝚛𝚊𝚗𝚍(𝟷𝟶𝟶𝟶)

New in Lilac: quantitative reasoning

17

New in Lilac: quantitative reasoning

17

𝚛𝚎𝚜𝚞𝚕𝚝 = 𝚗𝚙 . 𝚖𝚎𝚊𝚗(𝚍𝚊𝚝𝚊)

...then 𝚛𝚎𝚜𝚞𝚕𝚝 is a more accurate estimate of v

if each 𝚍𝚊𝚝𝚊[𝚒] is an independent estimate of v...

New in Lilac: quantitative reasoning

18

𝚛𝚎𝚜𝚞𝚕𝚝 = 𝚗𝚙 . 𝚖𝚎𝚊𝚗(𝚍𝚊𝚝𝚊)

if each 𝚍𝚊𝚝𝚊[𝚒] independent
and for all i we have 𝔼[𝚍𝚊𝚝𝚊[𝚒]] = v and Var(𝚍𝚊𝚝𝚊[𝚒]) ≤ ε...

...then 𝚛𝚎𝚜𝚞𝚕𝚝 is a more accurate estimate of v

New in Lilac: quantitative reasoning

19

𝚛𝚎𝚜𝚞𝚕𝚝 = 𝚗𝚙 . 𝚖𝚎𝚊𝚗(𝚍𝚊𝚝𝚊)

...then 𝔼[𝚛𝚎𝚜𝚞𝚕𝚝] = v and Var(𝚛𝚎𝚜𝚞𝚕𝚝) ≤
ε

|𝚍𝚊𝚝𝚊 |

if each 𝚍𝚊𝚝𝚊[𝚒] independent
and for all i we have 𝔼[𝚍𝚊𝚝𝚊[𝚒]] = v and Var(𝚍𝚊𝚝𝚊[𝚒]) ≤ ε...

New in Lilac: quantitative reasoning

20

𝚛𝚎𝚜𝚞𝚕𝚝 = 𝚗𝚙 . 𝚖𝚎𝚊𝚗(𝚍𝚊𝚝𝚊)

*0 ≤ i < |𝚍𝚊𝚝𝚊 |
(𝔼[𝚍𝚊𝚝𝚊[𝚒]] = v and Var(𝚍𝚊𝚝𝚊[𝚒]) ≤ ε)...if

...then 𝔼[𝚛𝚎𝚜𝚞𝚕𝚝] = v and Var(𝚛𝚎𝚜𝚞𝚕𝚝) ≤
ε

|𝚍𝚊𝚝𝚊 |

New in Lilac: good interop with normal math

21

𝚛𝚎𝚜𝚞𝚕𝚝 = 𝚗𝚙 . 𝚖𝚎𝚊𝚗(𝚍𝚊𝚝𝚊)

*0 ≤ i < |𝚍𝚊𝚝𝚊 |
(𝔼[𝚍𝚊𝚝𝚊[𝚒]] = v and Var(𝚍𝚊𝚝𝚊[𝚒]) ≤ ε)...if

...then 𝔼[𝚛𝚎𝚜𝚞𝚕𝚝] = v and Var(𝚛𝚎𝚜𝚞𝚕𝚝) ≤
ε

|𝚍𝚊𝚝𝚊 |

...then 𝔼[𝚛𝚎𝚜𝚞𝚕𝚝] = v and Var(𝚛𝚎𝚜𝚞𝚕𝚝) ≤
ε

|𝚍𝚊𝚝𝚊 |

New in Lilac: good interop with normal math

22

𝚛𝚎𝚜𝚞𝚕𝚝 = 𝚗𝚙 . 𝚖𝚎𝚊𝚗(𝚍𝚊𝚝𝚊)

An ordinary random variable

*0 ≤ i < |𝚍𝚊𝚝𝚊 |
(𝔼[𝚍𝚊𝚝𝚊[𝚒]] = v and Var(𝚍𝚊𝚝𝚊[𝚒]) ≤ ε)...if

...then 𝔼[𝚛𝚎𝚜𝚞𝚕𝚝] = v and Var(𝚛𝚎𝚜𝚞𝚕𝚝) ≤
ε

|𝚍𝚊𝚝𝚊 |

New in Lilac: good interop with normal math

23

𝚛𝚎𝚜𝚞𝚕𝚝 = 𝚗𝚙 . 𝚖𝚎𝚊𝚗(𝚍𝚊𝚝𝚊)

Ordinary expectation and variance

*0 ≤ i < |𝚍𝚊𝚝𝚊 |
(𝔼[𝚍𝚊𝚝𝚊[𝚒]] = v and Var(𝚍𝚊𝚝𝚊[𝚒]) ≤ ε)...if

New in Lilac: good interop with normal math

24

𝚛𝚎𝚜𝚞𝚕𝚝 = 𝚗𝚙 . 𝚖𝚎𝚊𝚗(𝚍𝚊𝚝𝚊)

 textbook proofs remain textbook⟹

*0 ≤ i < |𝚍𝚊𝚝𝚊 |
(𝔼[𝚍𝚊𝚝𝚊[𝚒]] = v and Var(𝚍𝚊𝚝𝚊[𝚒]) ≤ ε)...if

...then 𝔼[𝚛𝚎𝚜𝚞𝚕𝚝] = v and Var(𝚛𝚎𝚜𝚞𝚕𝚝) ≤
ε

|𝚍𝚊𝚝𝚊 |

Key idea

25

Key idea

• Probability spaces are the heaps of probability theory.

25

Probability spaces as heaps

26

Probability spaces as heaps

26

X ∼ Ber(1/2)

Probability spaces as heaps

26

X ∼ Ber(1/2) means Pr[X = true] = Pr[X = false] = 1/2

Probability spaces as heaps

26

X ∼ Ber(1/2) means Pr[X = true] = Pr[X = false] = 1/2

This hides a lot of machinery...

Probability spaces as heaps

27

X ∼ Ber(1/2) really means...

Ω

Probability spaces as heaps

27

X ∼ Ber(1/2) really means...

Ω

Probability spaces as heaps

true
false

bool

 : X Ω → bool

27

X ∼ Ber(1/2) really means...

Ω

Probability spaces as heaps

true
false

bool

 : X Ω → bool

27

X ∼ Ber(1/2) really means...

Ω

Probability spaces as heaps

true
false

bool

 : X Ω → bool

27

X ∼ Ber(1/2) really means...

Ω

Probability spaces as heaps

μ : events → [0,1]

true
false

bool

 : X Ω → bool

27

X ∼ Ber(1/2) really means...

Ω

Probability spaces as heaps

μ : events → [0,1]

true
false

bool

 : X Ω → bool

27

X ∼ Ber(1/2) really means...

∈ events

∈ events

Ω

Probability spaces as heaps

μ : events → [0,1]

true
false

bool

 : X Ω → bool

 μ() = 1/2

 μ() = 1/2

27

X ∼ Ber(1/2) really means...

∈ events

∈ events

Ω

Probability spaces as heaps

μ : events → [0,1]

true
false

bool

 : X Ω → bool

 μ() = 1/2

 μ() = 1/2

27

X ∼ Ber(1/2) really means...

∈ events

∈ events

Ω

Probability spaces as heaps

events

 μ

28

X ∼ Ber(1/2) really means...

Ω

Probability spaces as heaps

events

 μ

28

Only accessed indirectly through X

X ∼ Ber(1/2) really means...

Ω

Probability spaces as heaps

events

 μ

28

Only accessed indirectly through X

X ∼ Ber(1/2) really means...

Together, form a probability space

Probability spaces as heaps

29

(Ω, events, μ)

X

Probability theory

Probability spaces as heaps

29

(Ω, events, μ)

X

Probability theory ≃ Mutable references

h

ℓ

Key idea

• Probability spaces are the heaps of probability theory.

30

Key idea

• Probability spaces are the heaps of probability theory.

30

Key idea

• Probability spaces are the heaps of probability theory.

0

ℓx

30

Key idea

• Probability spaces are the heaps of probability theory.

0

ℓx

1

ℓy

0

ℓx

30

Key idea

• Probability spaces are the heaps of probability theory.

0

ℓx

1

ℓy
⊎

0

ℓx

30

Key idea

31

• Probability spaces are the heaps of probability theory.

Key idea

31

• Probability spaces are the heaps of probability theory.

X

Key idea

31

• Probability spaces are the heaps of probability theory.

X

YX

Key idea

31

• Probability spaces are the heaps of probability theory.

X

YX

Key idea

31

• Probability spaces are the heaps of probability theory.

X

YX

independent combination

("disjoint union for spaces")

Key idea

32

• Probability spaces are the heaps of probability theory.
• Separating conjunction decomposes probability spaces: 
 
 
 
 
 

Key idea

32

• Probability spaces are the heaps of probability theory.
• Separating conjunction decomposes probability spaces: 
 
 
 
 
 

⊎ ⊨
⊨

⊨
P Q*

P

Q
if

Key idea

32

• Probability spaces are the heaps of probability theory.
• Separating conjunction decomposes probability spaces: 
 
 
 
 
 

⊨
⊨

⊨
P Q*

P

Q
if

Key idea

32

• Probability spaces are the heaps of probability theory.
• Separating conjunction decomposes probability spaces: 
 
 
 
 
 

• frame rule, star as independence, good interop, ...⟹

⊨
⊨

⊨
P Q*

P

Q
if

Lilac: a modal separation logic for conditional probability

33

Lilac: a modal separation logic for conditional probability

• Conditioning as a modality:

33

Lilac: a modal separation logic for conditional probability

• Conditioning as a modality:

33

P

Lilac: a modal separation logic for conditional probability

• Conditioning as a modality:

33

P

 holds conditional on for all P X = x x

• Conditioning as a modality:

X ∼ Ber(1/2) Y ∼ Ber(1/2)*

Lilac: a modal separation logic for conditional probability

34

• Conditioning as a modality:

X ∼ Ber(1/2) Y ∼ Ber(1/2)*

 and are independentX Y

Lilac: a modal separation logic for conditional probability

34

• Conditioning as a modality:

X ∼ Ber(1/2) Y ∼ Ber(1/2)*

 and are independentX Y

 and have distribution X Y Ber(1/2)

Lilac: a modal separation logic for conditional probability

34

• Conditioning as a modality:

X ∼ Ber(1/2) Y ∼ Ber(1/2)*
z ← Z ()

Lilac: a modal separation logic for conditional probability

35

• Conditioning as a modality:

X ∼ Ber(1/2) Y ∼ Ber(1/2)*

 and are conditionally independent given X Y Z

z ← Z ()

Lilac: a modal separation logic for conditional probability

35

• Conditioning as a modality:

X ∼ Ber(1/2) Y ∼ Ber(1/2)*

 and are conditionally independent given X Y Z

z ← Z ()
 and have conditional distribution given X Y Ber(1/2) Z

Lilac: a modal separation logic for conditional probability

35

Lilac: a modal separation logic for conditional probability

36

• Conditioning as a modality:

 has expectation X 0E[X] = 0

Pr[E] = 1/2 has probability E 1/2

Lilac: a modal separation logic for conditional probability

37

• Conditioning as a modality:

 has expectation X 0E[X] = 0

Pr[E] = 1/2
x ← X () has probability given E 1/2 X = x

Lilac: a modal separation logic for conditional probability

38

• Conditioning as a modality:

 has conditional expectation X 0E[X] = 0
y ← Y()

Pr[E] = 1/2
x ← X () has probability given E 1/2 X = x

Lilac: a modal separation logic for conditional probability

39

• Conditioning as a modality
• Laws express intuitive facts and standard theorems:

Lilac: a modal separation logic for conditional probability

39

• Conditioning as a modality
• Laws express intuitive facts and standard theorems:

We used Lilac to verify

40

• Examples from prior work (cryptographic protocols)

• A tricky weighted sampling algorithm exercising

• Continuous random variables

• Quantitative reasoning

• Separation as independence

• Conditioning modality

Also in the paper

• Conditioning modality

• Ownership is measurability

• Worked examples

• Almost-sure equality X =a.s. Y

41

Thanks!

42
https://johnm.li/lilac.pdf

(Ω, events, μ)

X
Probability theory ≃ Mutable references

h

ℓ

li.john@northeastern.edu

