
Lilac: A Modal Separation Logic 
for Conditional Probability

https://johnm.li/lilac.pdf

John Li

li.john@northeastern.edu

Amal Ahmed

amal@ccs.neu.edu

Steven Holtzen

s.holtzen@northeastern.edu

1



How to reason about complex probabilistic systems?

2



How to reason about complex probabilistic systems?

2



How to reason about complex probabilistic systems?

2



How to reason about complex probabilistic systems?

2



How to reason about complex probabilistic systems?

2

Is my car safe?



How to reason about complex probabilistic systems?

2

Is my car safe? Is this decision fair?



How to reason about complex probabilistic systems?

2

Is my car safe? Is this decision fair? Is my result significant?
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𝚛𝚎𝚜𝚞𝚕𝚝 = 𝚏( . . . ) + 𝚐( . . . )
...then Var(𝚛𝚎𝚜𝚞𝚕𝚝) = Var(𝚏( . . . )) + Var(𝚐( . . . ))

if the outputs of 𝚏 and 𝚐 are independent...

• Independence arises frequently and naturally.

• Idea: capture independence using separation logic
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{P} e {x . Q(x)}
{P * F} e {x . Q(x) * F}

(Frame)

• This has enabled modular heap-based reasoning at scale.1

1C. Calcagno and D. Distefano. Infer: An automatic program verifier for memory safety of C programs. NFM 2011.

When verifying ...e ...I can ignore disjoint subheaps F
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Probability spaces as heaps

events

         μ

28

Only accessed indirectly through X

X ∼ Ber(1/2) really means...

Together, form a probability space
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(Ω, events, μ)

X

Probability theory



Probability spaces as heaps

29

(Ω, events, μ)

X

Probability theory ≃ Mutable references

h
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• Probability spaces are the heaps of probability theory.

X

YX

independent combination

("disjoint union for spaces")
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• Probability spaces are the heaps of probability theory.
• Separating conjunction decomposes probability spaces: 
 
 
 
 
 

•  frame rule, star as independence, good interop, ...⟹

⊨
⊨

⊨
P Q*

P

Q
if
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• Conditioning as a modality:

 has conditional expectation X 0E[X] = 0
y ← Y( )

Pr[E] = 1/2
x ← X ( )  has probability  given E 1/2 X = x
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We used Lilac to verify
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• Examples from prior work (cryptographic protocols)

• A tricky weighted sampling algorithm exercising

• Continuous random variables

• Quantitative reasoning

• Separation as independence

• Conditioning modality



Also in the paper

• Conditioning modality

• Ownership is measurability

• Worked examples


• Almost-sure equality X =a.s. Y

41



Thanks!
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https://johnm.li/lilac.pdf

(Ω, events, μ)

X
Probability theory ≃ Mutable references

h
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